Variation of Mumford quotients by torus actions on full flag varieties. I
Izvestiya. Mathematics , Tome 71 (2007) no. 6, pp. 1105-1122.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the variation of the Mumford quotient by the action of a maximal torus $T$ on a flag variety $G/B$ as we change the projective embedding $G/B \hookrightarrow\mathbb P(V(\chi))$, where the $T$-linearization is induced by the standard $G$-linearization. To do this, we describe the linear spans of the supports of the semistable orbits. This enables us to calculate the rank of the Picard group of the quotient $(G/B)^{ss}//T$ in the case when $G$ contains no simple components of type $A_n$.
@article{IM2_2007_71_6_a1,
     author = {V. S. Zhgoon},
     title = {Variation of {Mumford} quotients by torus actions on full flag varieties. {I}},
     journal = {Izvestiya. Mathematics },
     pages = {1105--1122},
     publisher = {mathdoc},
     volume = {71},
     number = {6},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_6_a1/}
}
TY  - JOUR
AU  - V. S. Zhgoon
TI  - Variation of Mumford quotients by torus actions on full flag varieties. I
JO  - Izvestiya. Mathematics 
PY  - 2007
SP  - 1105
EP  - 1122
VL  - 71
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2007_71_6_a1/
LA  - en
ID  - IM2_2007_71_6_a1
ER  - 
%0 Journal Article
%A V. S. Zhgoon
%T Variation of Mumford quotients by torus actions on full flag varieties. I
%J Izvestiya. Mathematics 
%D 2007
%P 1105-1122
%V 71
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2007_71_6_a1/
%G en
%F IM2_2007_71_6_a1
V. S. Zhgoon. Variation of Mumford quotients by torus actions on full flag varieties. I. Izvestiya. Mathematics , Tome 71 (2007) no. 6, pp. 1105-1122. http://geodesic.mathdoc.fr/item/IM2_2007_71_6_a1/

[1] V. L. Popov, “Gruppy Pikara odnorodnykh prostranstv lineinykh algebraicheskikh grupp i odnomernye odnorodnye vektornye rassloeniya”, Izv. AN SSSR. Ser. matem., 38:2 (1974), 294–322 | MR | Zbl

[2] Zh. Dedonne, Dzh. Kerrol, D. Mamford, Geometricheskaya teoriya invariantov, Mir, M., 1974 ; J. A. Dieudonné, J. B. Carrell, Invariant theory, old and new, Academic Press, New York–London, 1971 ; D. Mumford, Geometric invariant theory, Ergeb. Math. Grenzgeb., 34, Springer, Berlin–New York, 1965 | MR | Zbl | MR | Zbl | MR | Zbl

[3] J. B. Carrell, A. Kurth, “Normality of torus orbit closures in $G/P$”, J. Algebra, 233:1 (2000), 122–134 | DOI | MR | Zbl

[4] R. Dabrowski, “On normality of the closure of a generic torus orbit in $G/P$”, Pacific J. Math., 172:2 (1996), 321–330 | MR | Zbl

[5] S. Senthamarai Kannan, “Torus quotients of homogeneous spases. II”, Proc. Indian Acad. Sci. Math. Sci., 109:1 (1999), 23–39 | DOI | MR | Zbl

[6] R. F. Goldin, “The cohomology ring of weight varieties and polygon spaces”, Adv. Math., 160:2 (2001), 175–204 | DOI | MR | Zbl

[7] R. F. Goldin, A. L. Mare, “Cohomology of symplectic reductions of generic coadjoint orbits”, Proc. Amer. Math. Soc., 132:10 (2004), 3069–3074 | DOI | MR | Zbl

[8] C. S. Seshadri, “Quotient spases modulo reductive algebraic groups”, Ann. of Math. (2), 95:3 (1972), 511–556 | DOI | MR | Zbl

[9] I. N. Bershtein, I. M. Gelfand, S. I. Gelfand, “Kletki Shuberta i kogomologii prostranstv $G/P$”, UMN, 28:3 (1973), 3–26 | MR | Zbl

[10] E. B. Vinberg, A. L. Onischik, Seminar po gruppam Li i algebraicheskim gruppam, 2-e izd., URSS, M., 1995 ; A. L. Onishchik, E. B. Vinberg, Lie groups and algebraic groups, Springer Ser. Soviet Math., Springer, Berlin, 1990 | MR | Zbl | MR | Zbl

[11] Dzh. Khamfri, Lineinye algebraicheskie gruppy, Nauka, M., 1980 ; J. E. Humphreys, Linear algebraic groups, Grad. Texts in Math., 21, Springer, New York–Heidelberg, 1975 | MR | Zbl | MR | Zbl

[12] F. Knop, H. Kraft, T. Vust, “The Picard group of a $G$-variety”, Algebraische Transformationsgruppen und Invariantentheorie, DMV-Sem., 13, eds. H. Kraft, P. Slodowy, T. Springer, Birkhäuser, Basel–Boston, 1989, 77–87 | MR | Zbl