Variation of Mumford quotients by torus actions on full flag varieties. I
Izvestiya. Mathematics , Tome 71 (2007) no. 6, pp. 1105-1122
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the variation of the Mumford quotient by the action of a maximal
torus $T$ on a flag variety $G/B$ as we change the projective embedding
$G/B \hookrightarrow\mathbb P(V(\chi))$, where the $T$-linearization is
induced by the standard $G$-linearization. To do this, we describe the
linear spans of the supports of the semistable orbits. This enables us
to calculate the rank of the Picard group of the quotient $(G/B)^{ss}//T$
in the case when $G$ contains no simple components of type $A_n$.
@article{IM2_2007_71_6_a1,
author = {V. S. Zhgoon},
title = {Variation of {Mumford} quotients by torus actions on full flag varieties. {I}},
journal = {Izvestiya. Mathematics },
pages = {1105--1122},
publisher = {mathdoc},
volume = {71},
number = {6},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_6_a1/}
}
V. S. Zhgoon. Variation of Mumford quotients by torus actions on full flag varieties. I. Izvestiya. Mathematics , Tome 71 (2007) no. 6, pp. 1105-1122. http://geodesic.mathdoc.fr/item/IM2_2007_71_6_a1/