Lubin--Tate extensions, an elementary approach
Izvestiya. Mathematics , Tome 71 (2007) no. 6, pp. 1079-1104.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give an elementary proof of the assertion that the Lubin–Tate extension $L\geqslant K$ is an Abelian extension whose Galois group is isomorphic to $U_K/N_{L/K}(U_L)$ for arbitrary fields $K$ that have Henselian discrete valuation rings with finite residue fields. The term ‘elementary’ only means that the proofs are algebraic (that is, no transcedental methods are used [1], pp. 327, 332).
@article{IM2_2007_71_6_a0,
     author = {Yu. L. Ershov},
     title = {Lubin--Tate extensions, an elementary approach},
     journal = {Izvestiya. Mathematics },
     pages = {1079--1104},
     publisher = {mathdoc},
     volume = {71},
     number = {6},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_6_a0/}
}
TY  - JOUR
AU  - Yu. L. Ershov
TI  - Lubin--Tate extensions, an elementary approach
JO  - Izvestiya. Mathematics 
PY  - 2007
SP  - 1079
EP  - 1104
VL  - 71
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2007_71_6_a0/
LA  - en
ID  - IM2_2007_71_6_a0
ER  - 
%0 Journal Article
%A Yu. L. Ershov
%T Lubin--Tate extensions, an elementary approach
%J Izvestiya. Mathematics 
%D 2007
%P 1079-1104
%V 71
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2007_71_6_a0/
%G en
%F IM2_2007_71_6_a0
Yu. L. Ershov. Lubin--Tate extensions, an elementary approach. Izvestiya. Mathematics , Tome 71 (2007) no. 6, pp. 1079-1104. http://geodesic.mathdoc.fr/item/IM2_2007_71_6_a0/

[1] J. Neukirch, Algebraic number theory, Grundlehren Math. Wiss., 322, Springer, Berlin, 1999 | MR | Zbl

[2] Dzh. Kassels, A. Frelikh (red.), Algebraicheskaya teoriya chisel, Mir, M., 1969 ; J. W. S. Cassels, A. Frohlich (eds.), Algebraic number theory, Academic Press, London; Thompson, Washington, 1967 | MR | MR | Zbl

[3] K. Ivasava, Lokalnaya teoriya polei klassov, Mir, M., 1983 | MR

[4] J. Lubin, J. Tate, “Formal complex multiplication in local fields”, Ann. of Math. (2), 81:2 (1965), 380–387 | DOI | MR | Zbl

[5] M. Hazewinkel, “Local class field theory is easy”, Adv. Math., 18:2 (1975), 148–181 | DOI | MR | Zbl

[6] Yu. L. Ershov, “Abstraktnaya teoriya polei klassov (finitarnyi podkhod)”, Matem. sb., 194:2 (2003), 37–60 | MR | Zbl

[7] Yu. L. Ershov, “Abstract class field theory (module formatting)”, Siberian Advances in Mathematics, 18:4 (2006), 21–49 | MR | Zbl

[8] Yu. L. Ershov, “Lokalnaya teoriya polei klassov”, Algebra i analiz, 15:6 (2003), 35–47 ; Yu. L. Ershov, “Local class field theory”, St. Petersburg Math. J., 15:6 (2004), 837–846 | MR | Zbl | DOI

[9] Yu. L. Ershov, Kratno normirovannye polya, Nauchnaya kniga, Novosibirsk, 2000