Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2007_71_6_a0, author = {Yu. L. Ershov}, title = {Lubin--Tate extensions, an elementary approach}, journal = {Izvestiya. Mathematics }, pages = {1079--1104}, publisher = {mathdoc}, volume = {71}, number = {6}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_6_a0/} }
Yu. L. Ershov. Lubin--Tate extensions, an elementary approach. Izvestiya. Mathematics , Tome 71 (2007) no. 6, pp. 1079-1104. http://geodesic.mathdoc.fr/item/IM2_2007_71_6_a0/
[1] J. Neukirch, Algebraic number theory, Grundlehren Math. Wiss., 322, Springer, Berlin, 1999 | MR | Zbl
[2] Dzh. Kassels, A. Frelikh (red.), Algebraicheskaya teoriya chisel, Mir, M., 1969 ; J. W. S. Cassels, A. Frohlich (eds.), Algebraic number theory, Academic Press, London; Thompson, Washington, 1967 | MR | MR | Zbl
[3] K. Ivasava, Lokalnaya teoriya polei klassov, Mir, M., 1983 | MR
[4] J. Lubin, J. Tate, “Formal complex multiplication in local fields”, Ann. of Math. (2), 81:2 (1965), 380–387 | DOI | MR | Zbl
[5] M. Hazewinkel, “Local class field theory is easy”, Adv. Math., 18:2 (1975), 148–181 | DOI | MR | Zbl
[6] Yu. L. Ershov, “Abstraktnaya teoriya polei klassov (finitarnyi podkhod)”, Matem. sb., 194:2 (2003), 37–60 | MR | Zbl
[7] Yu. L. Ershov, “Abstract class field theory (module formatting)”, Siberian Advances in Mathematics, 18:4 (2006), 21–49 | MR | Zbl
[8] Yu. L. Ershov, “Lokalnaya teoriya polei klassov”, Algebra i analiz, 15:6 (2003), 35–47 ; Yu. L. Ershov, “Local class field theory”, St. Petersburg Math. J., 15:6 (2004), 837–846 | MR | Zbl | DOI
[9] Yu. L. Ershov, Kratno normirovannye polya, Nauchnaya kniga, Novosibirsk, 2000