Isometric immersions and embeddings of a flat M\"obius strip in Euclidean spaces
Izvestiya. Mathematics , Tome 71 (2007) no. 5, pp. 1049-1078.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish formulae for isometric embeddings and immersions of Möbius bands with a locally Euclidean metric and study extrinsic geometric properties of these surfaces. We consider both standard Möbius bands corresponding to embeddings of a rectangular Möbius strip and general Möbius bands, in particular, those with generators orthogonal to the directrix.
@article{IM2_2007_71_5_a5,
     author = {I. Kh. Sabitov},
     title = {Isometric immersions and embeddings of a flat {M\"obius} strip in {Euclidean} spaces},
     journal = {Izvestiya. Mathematics },
     pages = {1049--1078},
     publisher = {mathdoc},
     volume = {71},
     number = {5},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_5_a5/}
}
TY  - JOUR
AU  - I. Kh. Sabitov
TI  - Isometric immersions and embeddings of a flat M\"obius strip in Euclidean spaces
JO  - Izvestiya. Mathematics 
PY  - 2007
SP  - 1049
EP  - 1078
VL  - 71
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2007_71_5_a5/
LA  - en
ID  - IM2_2007_71_5_a5
ER  - 
%0 Journal Article
%A I. Kh. Sabitov
%T Isometric immersions and embeddings of a flat M\"obius strip in Euclidean spaces
%J Izvestiya. Mathematics 
%D 2007
%P 1049-1078
%V 71
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2007_71_5_a5/
%G en
%F IM2_2007_71_5_a5
I. Kh. Sabitov. Isometric immersions and embeddings of a flat M\"obius strip in Euclidean spaces. Izvestiya. Mathematics , Tome 71 (2007) no. 5, pp. 1049-1078. http://geodesic.mathdoc.fr/item/IM2_2007_71_5_a5/

[1] G. Schwarz, “A pretender to the title "canonical Moebius strip”, Pacific J. Math., 143:1 (1990), 195–200 | MR | Zbl

[2] G. E. Schwarz, “The dark side of the Moebius strip”, Amer. Math. Monthly, 97:10 (1990), 890–897 | DOI | MR | Zbl

[3] B. Halperin, C. Weaver, “Inverting a cylinder through isometric immersions and isometric embeddings”, Trans. Amer. Math. Soc., 230 (1977), 41–70 | DOI | MR | Zbl

[4] W. Wunderlich, “Über ein abwickelbares Möbiusband”, Monatsh. Math., 66:3 (1962), 276–289 | DOI | MR | Zbl

[5] M. Sadowsky, “Ein elementarer Beweis für die Existenz eines abwickelbaren Möbiusschen Bandes und Zurückführung des geometrischen Problems auf ein Variationproblem”, Sitzungsber. Akad. Berlin, 22 (1930), 412–415 | Zbl

[6] W. Klingenberg, A course in differential geometry, Grad. Texts in Math., 51, Springer, New York–Heidelberg–Berlin, 1978 | MR | Zbl

[7] V. Ushakov, “Parametrisation of developable surfaces by asymptotic lines”, Bull. Austral. Math. Soc., 54:3 (1996), 411–421 | DOI | MR | Zbl

[8] M. Sadowsky, “Theorie der elastisch biegsamen undehnbaren Bänder mit Anwendungen auf das Möbiussche Band”, Verh. 3. Intern. Kongr. Techn. Mechanik (Stockholm), II, 1930, 444–451

[9] A. V. Pogorelov, Vneshnyaya geometriya vypuklykh poverkhnostei, Nauka, M., 1969 ; A. V. Pogorelov, Extrinsic geometry of convex surfaces, Transl. Math. Monogr., 35, Amer. Math. Soc., Providence, RI, 1973 | MR | Zbl | MR | Zbl

[10] Yu. D. Burago, “Geometriya poverkhnostei v evklidovykh prostranstvakh”, Itogi nauki i tekhniki. Sovrem. problemy matem. Fundam. napr., 48, VINITI, M., 1989, 5–97 ; Yu. D. Burago, S. Z. Shefel', “Geometry of surfaces in Euclidean spaces”, Geometry, III, Encyclopaedia Math. Sci., 48, Springer, Berlin, 1992, 1–85 | MR | Zbl | MR

[11] Ph. Hartman, L. Nirenberg, “On spherical image maps whose Jacobian do not change sign”, Amer. J. Math., 81:4 (1959), 901–920 | DOI | MR | Zbl

[12] H. Mashke, “Note on the unilateral surface of Moebius”, Trans. Amer. Math. Soc., 1:1 (1900), 39 | DOI | MR | Zbl

[13] C.-C. Hsiung, A first course in differential geometry, Pure Appl. Math., Wiley, New York, 1981 | MR | Zbl

[14] Yu. D. Burago, V. A. Zalgaller, “Realizatsiya razvertok v vide mnogogrannikov”, Vestn. LGU. Ser. matem., mekh., astron., 15:7 (1960), 66–80 | MR | Zbl

[15] Yu. D. Burago, V. A. Zalgaller, “Izometricheskie kusochno-lineinye pogruzheniya dvumernykh mnogoobrazii s poliedralnoi metrikoi v $R^3$”, Algebra i analiz, 7:3 (1995), 76–95 ; Ju. D. Burago, V. A. Zalgaller, “Isometric piecewise-linear embeddings of two-dimensional manifolds with a polyhedral metric into $R^3$”, St. Petersburg Math. J., 7:3 (1996), 369–385 | MR | Zbl

[16] S. Barr, “Topologicheskie eksperimenty”, Rossypi golovolomok, Mir, M., 1987, 259–413; S. Barr, Experiments in topology, Crowell, New York, 1964 | Zbl

[17] B. Blanuša, “Le plongement isométrique de la bande de Möbius infiniment large euclidienne dans un espace sphérique, parabolique on hyperbolique à quatre dimensions”, Bull. Internat. Acad. Yougoslave. Cl. Sci. Math. Phys. Tech. (N.S.), 12 (1954), 19–23 | MR | Zbl

[18] A. V. Bushmelev, “Izometricheskie vlozheniya beskonechnogo ploskogo lista Mebiusa i ploskoi butylki Kleina v $R^4$”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1988, no. 3, 38–41 | MR | Zbl

[19] J. A. Gálvez, P. Mira, Isometric immersions of $R^2$ into $R^4$ and perturbation of Hopf tori, arXiv: math.DG/0301075

[20] C. Chicone, N. J. Kalton, “Flat embeddings of the Möbius strip in $R^3$”, Comm. Appl. Nonlinear Anal., 9:2 (2002), 31–50 | MR | Zbl

[21] T. Randrup, P. Rogen, “Sides of the Möbius strip”, Arch. Math. (Basel), 66:6 (1996), 511–521 | DOI | MR | Zbl