Khovanov homology for virtual knots with arbitrary coefficients
Izvestiya. Mathematics , Tome 71 (2007) no. 5, pp. 967-999.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Khovanov homology theory over an arbitrary coefficient ring is extended to the case of virtual knots. We introduce a complex which is well-defined in the virtual case and is homotopy equivalent to the original Khovanov complex in the classical case. Unlike Khovanov's original construction, our definition of the complex does not use any additional prescription of signs to the edges of a cube. Moreover, our method enables us to construct a Khovanov homology theory for ‘twisted virtual knots’ in the sense of Bourgoin and Viro (including knots in three-dimensional projective space). We generalize a number of results of Khovanov homology theory (the Wehrli complex, minimality problems, Frobenius extensions) to virtual knots with non-orientable atoms.
@article{IM2_2007_71_5_a3,
     author = {V. O. Manturov},
     title = {Khovanov homology for virtual knots with arbitrary coefficients},
     journal = {Izvestiya. Mathematics },
     pages = {967--999},
     publisher = {mathdoc},
     volume = {71},
     number = {5},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_5_a3/}
}
TY  - JOUR
AU  - V. O. Manturov
TI  - Khovanov homology for virtual knots with arbitrary coefficients
JO  - Izvestiya. Mathematics 
PY  - 2007
SP  - 967
EP  - 999
VL  - 71
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2007_71_5_a3/
LA  - en
ID  - IM2_2007_71_5_a3
ER  - 
%0 Journal Article
%A V. O. Manturov
%T Khovanov homology for virtual knots with arbitrary coefficients
%J Izvestiya. Mathematics 
%D 2007
%P 967-999
%V 71
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2007_71_5_a3/
%G en
%F IM2_2007_71_5_a3
V. O. Manturov. Khovanov homology for virtual knots with arbitrary coefficients. Izvestiya. Mathematics , Tome 71 (2007) no. 5, pp. 967-999. http://geodesic.mathdoc.fr/item/IM2_2007_71_5_a3/

[1] L. H. Kauffman, “Virtual knot theory”, European J. Combin., 20:7 (1999), 663–690 | DOI | MR | Zbl

[2] V. O. Manturov, Teoriya uzlov, RKhD, Moskva–Izhevsk, 2005; V. O. Manturov, Knot theory, Chapman Hall, Boca Raton, FL, 2004 | MR | Zbl

[3] F. Jaeger, L. H. Kauffman, H. Saleur, “The Conway polynomial in $S^{3}$ and thickened surfaces: a new determinant formulation”, J. Combin. Theory Ser. B, 61:2 (1994), 237–259 | DOI | MR | Zbl

[4] N. Kamada, S. Kamada, “Abstract link diagrams and virtual knots”, J. Knot Theory Ramifications, 9:1 (2000), 93–109 | DOI | MR | Zbl

[5] G. Kuperberg, “What is a virtual link?”, Algebr. Geom. Topol., 3 (2003), 587–591 | DOI | MR | Zbl

[6] M. Khovanov, “A categorification of the Jones polynomial”, Duke Math. J., 101:3 (2000), 359–426 | DOI | MR | Zbl

[7] M. Khovanov, L. Rozansky, Matrix factorizations and link homology, arXiv: math.QA/0401268

[8] M. Khovanov, L. Rozansky, Matrix factorizations and link homology, II, arXiv: math.QA/0505056

[9] V. O. Manturov, “Polinom Khovanova dlya virtualnykh uzlov”, Dokl. RAN, 398:1 (2004), 15–18 | MR

[10] V. O. Manturov, “Kompleks Khovanova dlya virtualnykh uzlov”, Fundam. i prikl. matem., 11:4 (2005), 127–152 | MR

[11] D. Bar-Natan, “On Khovanov's categorification of the Jones polynomial”, Algebr. Geom. Topol., 2 (2002), 337–370 | DOI | MR | Zbl

[12] M. Jacobsson, An invariant of link cobordisms from Khovanov homology, arXiv: math.GT/0206303

[13] D. Bar-Natan, Khovanov's homology for tangles and cobordisms, arXiv: math.GT/0410495

[14] O. Viro, “Virtual links, orientations and chord diagrams and Khovanov homology”, Proceedings of Gökova geometry-topology conference (Gökova, Turkey, 2005), International Press, Cambridge, MA, 2006, 187–212 | MR | Zbl

[15] Yu. V. Drobotukhina, “Analog polinoma Dzhounsa–Kaufmana dlya zatseplenii v $\mathbb{R}P^3$ i obobschenie teoremy Kaufmana–Murasugi”, Algebra i analiz, 2:3 (1990), 171–191 ; Yu. V. Drobotukhina, “An analogue of the Jones polynomial for links in $\mathbb{R}P^3$ and a generalization of the Kauffman–Murasugi theorem”, Leningrad Math. J., 2:3 (1991), 613–630 | MR | Zbl

[16] A. T. Fomenko, “The theory of invariants of multidimensional integrable Hamiltonian systems (with arbitrary many degrees of freedom). Molecular table of all integrable systems with two degrees of freedom”, Topological classification of integrable systems, Adv. Soviet Math., 6, Amer. Math. Soc., Providence, RI, 1991, 1–35 | MR | Zbl

[17] R. A. Fenn, L. H. Kauffman, V. O. Manturov, “Virtual knot theory – unsolved problems”, Fund. Math., 188 (2005), 293–323 | DOI | MR | Zbl

[18] M. O. Bourgoin, Twisted link theory, arXiv: math.GT/0608233

[19] M. Asaeda, J. Przytycki, A. Sikora, “Categorification of the Kauffman bracket skein module of $I$-bundles over surfaces”, Algebr. Geom. Topol., 4 (2004), 1177–1210 | DOI | MR | Zbl

[20] M. Goussarov, M. Polyak, O. Viro, “Finite-type invariants of classical and virtual knots”, Topology, 39:5 (2000), 1045–1068 | DOI | MR | Zbl

[21] M. Khovanov, “Link homology and Frobenius extensions”, Fund. Math., 190 (2006), 179–190 | DOI | MR | Zbl

[22] T. Ohtsuki, Quantum invariants. A study of knots, 3-manifolds, and their sets, Ser. Knots Everything, 29, World Sci. Publ., Singapore, 2002 | MR | Zbl

[23] S. Wehrli, A spanning tree model for Khovanov homology, arXiv: math.GT/0409328

[24] A. Champanerkar, I. Kofman, Spanning trees and Khovanov homology, arXiv: math.GT/0607510

[25] V. O. Manturov, “Kompleks Khovanova i minimalnye diagrammy uzlov”, Dokl. RAN, 406:3 (2006), 308–311 | MR

[26] M. M. Asaeda, J. H. Przytycki, “Khovanov homology: torsion and thickness”, Advances in topological quantum field theory, Proc. of the NATO Advanced Research Workshop on new techniques in topological quantum field theory (Kananaskis Village, Canada, August 22–26, 2001), NATO Sci. Ser. II. Math. Phys. Chem., 179, ed. J. M. Bryden, Kluwer, Dordrecht, 2004, 135–166 ; arXiv: math.GT/0405474 | MR | Zbl

[27] A. Shumakovitch, Torsion of the Khovanov homology, arXiv: math.GT/0405474

[28] E. S. Lee, An endomorphism of the Khovanov invariant, arXiv: math.GT/0210213 | MR

[29] J. Rasmussen, Some differentials on Khovanov–Rozansky homology, arXiv: math.GT/0607544

[30] V. G. Turaev, P. Turner, Unoriented topological quantum field theory and link homology, arXiv: math.GT/0506229