Burnside structures of finite subgroups
Izvestiya. Mathematics , Tome 71 (2007) no. 5, pp. 939-965

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish conditions guaranteeing that a group $B$ possesses the following property: there is a number $\ell$ such that if elements $w$, $x^{-1}wx$, $\dots$, $x^{-\ell+1}wx^{\ell-1}$ of $B$ generate a finite subgroup $G$ then $x$ lies in the normalizer of $G$. These conditions are of a quite special form. They hold for groups with relations of the form $x^n=1$ which appear as approximating groups for the free Burnside groups $B(m,n)$ of sufficiently large even exponent $n$. We extract an algebraic assertion which plays an important role in all known approaches to substantial results on the groups $B(m,n)$ of large even exponent, in particular, to proving their infiniteness. The main theorem asserts that when $n$ is divisible by 16, $B$ has the above property with $\ell=6$.
@article{IM2_2007_71_5_a2,
     author = {I. G. Lysenok},
     title = {Burnside structures of finite subgroups},
     journal = {Izvestiya. Mathematics },
     pages = {939--965},
     publisher = {mathdoc},
     volume = {71},
     number = {5},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_5_a2/}
}
TY  - JOUR
AU  - I. G. Lysenok
TI  - Burnside structures of finite subgroups
JO  - Izvestiya. Mathematics 
PY  - 2007
SP  - 939
EP  - 965
VL  - 71
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2007_71_5_a2/
LA  - en
ID  - IM2_2007_71_5_a2
ER  - 
%0 Journal Article
%A I. G. Lysenok
%T Burnside structures of finite subgroups
%J Izvestiya. Mathematics 
%D 2007
%P 939-965
%V 71
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2007_71_5_a2/
%G en
%F IM2_2007_71_5_a2
I. G. Lysenok. Burnside structures of finite subgroups. Izvestiya. Mathematics , Tome 71 (2007) no. 5, pp. 939-965. http://geodesic.mathdoc.fr/item/IM2_2007_71_5_a2/