Burnside structures of finite subgroups
Izvestiya. Mathematics , Tome 71 (2007) no. 5, pp. 939-965.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish conditions guaranteeing that a group $B$ possesses the following property: there is a number $\ell$ such that if elements $w$, $x^{-1}wx$, $\dots$, $x^{-\ell+1}wx^{\ell-1}$ of $B$ generate a finite subgroup $G$ then $x$ lies in the normalizer of $G$. These conditions are of a quite special form. They hold for groups with relations of the form $x^n=1$ which appear as approximating groups for the free Burnside groups $B(m,n)$ of sufficiently large even exponent $n$. We extract an algebraic assertion which plays an important role in all known approaches to substantial results on the groups $B(m,n)$ of large even exponent, in particular, to proving their infiniteness. The main theorem asserts that when $n$ is divisible by 16, $B$ has the above property with $\ell=6$.
@article{IM2_2007_71_5_a2,
     author = {I. G. Lysenok},
     title = {Burnside structures of finite subgroups},
     journal = {Izvestiya. Mathematics },
     pages = {939--965},
     publisher = {mathdoc},
     volume = {71},
     number = {5},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_5_a2/}
}
TY  - JOUR
AU  - I. G. Lysenok
TI  - Burnside structures of finite subgroups
JO  - Izvestiya. Mathematics 
PY  - 2007
SP  - 939
EP  - 965
VL  - 71
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2007_71_5_a2/
LA  - en
ID  - IM2_2007_71_5_a2
ER  - 
%0 Journal Article
%A I. G. Lysenok
%T Burnside structures of finite subgroups
%J Izvestiya. Mathematics 
%D 2007
%P 939-965
%V 71
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2007_71_5_a2/
%G en
%F IM2_2007_71_5_a2
I. G. Lysenok. Burnside structures of finite subgroups. Izvestiya. Mathematics , Tome 71 (2007) no. 5, pp. 939-965. http://geodesic.mathdoc.fr/item/IM2_2007_71_5_a2/

[1] P. S. Novikov, S. I. Adyan, “Beskonechnye periodicheskie gruppy, I–III”, Izv. AN SSSR. Ser. matem., 32:1 (1968), 212–244 ; 32:2, 251–524 ; 32:3, 709–731 ; P. S. Novikov, S. I. Adjan, “Infinite periodic groups, I–III”, Math. USSR-Izv., 2:1 (1968), 209–236 ; 2:2, 241–479 ; 2:3, 665–685 | MR | Zbl | MR | MR | DOI | DOI | DOI

[2] S. I. Adyan, Problema Bernsaida i tozhdestva v gruppakh, Nauka, M., 1975 ; S. I. Adian, The Burnside problem and identities in groups, Ergeb. Math. Grenzgeb., 95, Springer, Berlin–Heidelberg–New York, 1979 | MR | Zbl | MR | Zbl

[3] A. Yu. Olshanskii, Geometriya opredelyayuschikh sootnoshenii v gruppakh, Sovrem. algebra, Nauka, M., 1989 ; A. Yu. Ol'shanskii, Geometry of defining relations in groups, Math. Appl. (Soviet Ser.), 70, Kluwer, Dordrecht, 1991 | MR | Zbl | MR | Zbl

[4] S. V. Ivanov, “The free Burnside groups of sufficiently large exponents”, Internat. J. Algebra Comput., 4:1–2 (1994), 1–308 | DOI | MR | Zbl

[5] I. G. Lysenok, “Beskonechnye bernsaidovy gruppy chetnogo perioda”, Izv. RAN. Ser. matem., 60:3 (1996), 3–224 | MR | Zbl

[6] T. Delzant, M. Gromov, Groupes de Burnside et géométrie hyperbolique, Preprint, 2003 | MR