Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2007_71_5_a1, author = {S. N. Kudryavtsev}, title = {Approximation and reconstruction of the derivatives of functions satisfying mixed {H\"older} conditions}, journal = {Izvestiya. Mathematics }, pages = {895--938}, publisher = {mathdoc}, volume = {71}, number = {5}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_5_a1/} }
TY - JOUR AU - S. N. Kudryavtsev TI - Approximation and reconstruction of the derivatives of functions satisfying mixed H\"older conditions JO - Izvestiya. Mathematics PY - 2007 SP - 895 EP - 938 VL - 71 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2007_71_5_a1/ LA - en ID - IM2_2007_71_5_a1 ER -
S. N. Kudryavtsev. Approximation and reconstruction of the derivatives of functions satisfying mixed H\"older conditions. Izvestiya. Mathematics , Tome 71 (2007) no. 5, pp. 895-938. http://geodesic.mathdoc.fr/item/IM2_2007_71_5_a1/
[1] S. N. Kudryavtsev, “Vosstanovlenie funktsii vmeste s ikh proizvodnymi po znacheniyam funktsii v zadannom chisle tochek”, Izv. RAN. Ser. matem., 58:6 (1994), 79–104 ; S. N. Kudryavtsev, “Recovering a function with its derivatives from function values at a given number of points”, Izv. Math., 45:3 (1995), 505–528 | MR | Zbl | DOI
[2] S. N. Kudryavtsev, “Priblizhenie operatora chastnogo differentsirovaniya ogranichennymi operatorami na klasse funktsii konechnoi gladkosti”, Matem. sb., 187:3 (1996), 75–92 | MR | Zbl
[3] S. N. Kudryavtsev, “Nailuchshaya tochnost vosstanovleniya funktsii konechnoi gladkosti po ikh znacheniyam v zadannom chisle tochek”, Izv. RAN. Ser. matem., 62:1 (1998), 21–58 | MR | Zbl
[4] S. N. Kudryavtsev, “Zadacha Stechkina dlya operatora chastnogo differentsirovaniya na klassakh funktsii konechnoi gladkosti”, Matem. zametki, 67:1 (2000), 77–86 | MR | Zbl
[5] S. N. Kudryavtsev, “Priblizhenie proizvodnykh funktsii konechnoi gladkosti iz neizotropnykh klassov”, Izv. RAN. Ser. matem., 68:1 (2004), 79–122 | MR
[6] V. M. Tikhomirov, Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976 | MR
[7] N. N. Anuchina, K. I. Babenko, S. K. Godunov i dr., Teoreticheskie osnovy i konstruirovanie chislennykh algoritmov zadach matematicheskoi fiziki, Nauka, M., 1979 | MR | Zbl
[8] Dzh. Traub, Kh. Vozhnyakovskii, Obschaya teoriya optimalnykh algoritmov, Mir, M., 1983 ; J. F. Traub, H. Woźniakowski, A general theory of optimal algorithms, ACM Monogr. Ser., Academic Press, New York–London, 1980 | MR | Zbl | MR | Zbl
[9] V. M. Tikhomirov, “Garmoniki i splainy kak optimalnye sredstva priblizheniya i vosstanovleniya”, UMN, 50:2 (1995), 125–174 | MR | Zbl
[10] V. V. Arestov, “Priblizhenie neogranichennykh operatorov ogranichennymi i rodstvennye ekstremalnye zadachi”, UMN, 51:6 (1996), 89–124 | MR | Zbl
[11] S. N. Kudryavtsev, “Vosstanovlenie proizvodnykh funktsii, udovletvoryayuschikh smeshannym usloviyam Geldera, po znacheniyam funktsii v zadannom chisle tochek”, Funktsionalnye prostranstva, teoriya priblizhenii, nelineinyi analiz (Moskva, 2005), Matem. inst. im. V. A. Steklova RAN, M., 2005, 140
[12] S. M. Nikolskii, “Funktsii s dominiruyuschei smeshannoi proizvodnoi, udovletvoryayuschei kratnomu usloviyu Geldera”, Sib. matem. zhurn., 4:6 (1963), 1342–1364 ; S. M. Nikol'skii, “Functions with dominant mixed derivative satisfying a multiple Hölder condition”, Amer. Math. Soc. Transl. (2), 102 (1973), 27–51 | MR | Zbl | Zbl
[13] T. I. Amanov, Prostranstva differentsiruemykh funktsii s dominiruyuschei smeshannoi proizvodnoi, “Nauka” KazSSR, Alma-Ata, 1976 | MR
[14] K. Chui, Vvedenie v veivlety, Mir, M., 2001; C. K. Chui, An introduction to wavelets, Wavelet Anal. Appl., 1, Academic Press, Boston, 1992 | MR | Zbl
[15] È. M. Galeev, “Bernstein diameters for the classes of periodic functions of several variables”, Math. Balkanica (N.S.), 5:3 (1991), 229–244 | MR | Zbl