Approximation and reconstruction of the derivatives of functions satisfying mixed H\"older conditions
Izvestiya. Mathematics , Tome 71 (2007) no. 5, pp. 895-938.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain upper and lower bounds for the best accuracy of approximation in Stechkin's problem for the differentiation operator and in the problem of the reconstruction of the derivative from the values of the function at a given number of points for Nikol'skii and Besov classes of functions satisfying mixed Hölder's conditions. These estimates give the order of these quantities for almost all values of the parameters involved.
Keywords: accuracy, approximation, differential operator, recovery, derivative, function values, mixed.
@article{IM2_2007_71_5_a1,
     author = {S. N. Kudryavtsev},
     title = {Approximation and reconstruction of the derivatives of functions satisfying mixed {H\"older} conditions},
     journal = {Izvestiya. Mathematics },
     pages = {895--938},
     publisher = {mathdoc},
     volume = {71},
     number = {5},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_5_a1/}
}
TY  - JOUR
AU  - S. N. Kudryavtsev
TI  - Approximation and reconstruction of the derivatives of functions satisfying mixed H\"older conditions
JO  - Izvestiya. Mathematics 
PY  - 2007
SP  - 895
EP  - 938
VL  - 71
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2007_71_5_a1/
LA  - en
ID  - IM2_2007_71_5_a1
ER  - 
%0 Journal Article
%A S. N. Kudryavtsev
%T Approximation and reconstruction of the derivatives of functions satisfying mixed H\"older conditions
%J Izvestiya. Mathematics 
%D 2007
%P 895-938
%V 71
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2007_71_5_a1/
%G en
%F IM2_2007_71_5_a1
S. N. Kudryavtsev. Approximation and reconstruction of the derivatives of functions satisfying mixed H\"older conditions. Izvestiya. Mathematics , Tome 71 (2007) no. 5, pp. 895-938. http://geodesic.mathdoc.fr/item/IM2_2007_71_5_a1/

[1] S. N. Kudryavtsev, “Vosstanovlenie funktsii vmeste s ikh proizvodnymi po znacheniyam funktsii v zadannom chisle tochek”, Izv. RAN. Ser. matem., 58:6 (1994), 79–104 ; S. N. Kudryavtsev, “Recovering a function with its derivatives from function values at a given number of points”, Izv. Math., 45:3 (1995), 505–528 | MR | Zbl | DOI

[2] S. N. Kudryavtsev, “Priblizhenie operatora chastnogo differentsirovaniya ogranichennymi operatorami na klasse funktsii konechnoi gladkosti”, Matem. sb., 187:3 (1996), 75–92 | MR | Zbl

[3] S. N. Kudryavtsev, “Nailuchshaya tochnost vosstanovleniya funktsii konechnoi gladkosti po ikh znacheniyam v zadannom chisle tochek”, Izv. RAN. Ser. matem., 62:1 (1998), 21–58 | MR | Zbl

[4] S. N. Kudryavtsev, “Zadacha Stechkina dlya operatora chastnogo differentsirovaniya na klassakh funktsii konechnoi gladkosti”, Matem. zametki, 67:1 (2000), 77–86 | MR | Zbl

[5] S. N. Kudryavtsev, “Priblizhenie proizvodnykh funktsii konechnoi gladkosti iz neizotropnykh klassov”, Izv. RAN. Ser. matem., 68:1 (2004), 79–122 | MR

[6] V. M. Tikhomirov, Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976 | MR

[7] N. N. Anuchina, K. I. Babenko, S. K. Godunov i dr., Teoreticheskie osnovy i konstruirovanie chislennykh algoritmov zadach matematicheskoi fiziki, Nauka, M., 1979 | MR | Zbl

[8] Dzh. Traub, Kh. Vozhnyakovskii, Obschaya teoriya optimalnykh algoritmov, Mir, M., 1983 ; J. F. Traub, H. Woźniakowski, A general theory of optimal algorithms, ACM Monogr. Ser., Academic Press, New York–London, 1980 | MR | Zbl | MR | Zbl

[9] V. M. Tikhomirov, “Garmoniki i splainy kak optimalnye sredstva priblizheniya i vosstanovleniya”, UMN, 50:2 (1995), 125–174 | MR | Zbl

[10] V. V. Arestov, “Priblizhenie neogranichennykh operatorov ogranichennymi i rodstvennye ekstremalnye zadachi”, UMN, 51:6 (1996), 89–124 | MR | Zbl

[11] S. N. Kudryavtsev, “Vosstanovlenie proizvodnykh funktsii, udovletvoryayuschikh smeshannym usloviyam Geldera, po znacheniyam funktsii v zadannom chisle tochek”, Funktsionalnye prostranstva, teoriya priblizhenii, nelineinyi analiz (Moskva, 2005), Matem. inst. im. V. A. Steklova RAN, M., 2005, 140

[12] S. M. Nikolskii, “Funktsii s dominiruyuschei smeshannoi proizvodnoi, udovletvoryayuschei kratnomu usloviyu Geldera”, Sib. matem. zhurn., 4:6 (1963), 1342–1364 ; S. M. Nikol'skii, “Functions with dominant mixed derivative satisfying a multiple Hölder condition”, Amer. Math. Soc. Transl. (2), 102 (1973), 27–51 | MR | Zbl | Zbl

[13] T. I. Amanov, Prostranstva differentsiruemykh funktsii s dominiruyuschei smeshannoi proizvodnoi, “Nauka” KazSSR, Alma-Ata, 1976 | MR

[14] K. Chui, Vvedenie v veivlety, Mir, M., 2001; C. K. Chui, An introduction to wavelets, Wavelet Anal. Appl., 1, Academic Press, Boston, 1992 | MR | Zbl

[15] È. M. Galeev, “Bernstein diameters for the classes of periodic functions of several variables”, Math. Balkanica (N.S.), 5:3 (1991), 229–244 | MR | Zbl