Approximation and reconstruction of the derivatives of functions satisfying mixed H\"older conditions
Izvestiya. Mathematics , Tome 71 (2007) no. 5, pp. 895-938
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain upper and lower bounds for the best accuracy of approximation in
Stechkin's problem for the differentiation operator and in the problem of the
reconstruction of the derivative from the values of the function at a given
number of points for Nikol'skii and Besov classes of functions satisfying
mixed Hölder's conditions. These estimates give the order of these
quantities for almost all values of the parameters involved.
Keywords:
accuracy, approximation, differential operator, recovery, derivative, function values, mixed.
@article{IM2_2007_71_5_a1,
author = {S. N. Kudryavtsev},
title = {Approximation and reconstruction of the derivatives of functions satisfying mixed {H\"older} conditions},
journal = {Izvestiya. Mathematics },
pages = {895--938},
publisher = {mathdoc},
volume = {71},
number = {5},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_5_a1/}
}
TY - JOUR AU - S. N. Kudryavtsev TI - Approximation and reconstruction of the derivatives of functions satisfying mixed H\"older conditions JO - Izvestiya. Mathematics PY - 2007 SP - 895 EP - 938 VL - 71 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2007_71_5_a1/ LA - en ID - IM2_2007_71_5_a1 ER -
S. N. Kudryavtsev. Approximation and reconstruction of the derivatives of functions satisfying mixed H\"older conditions. Izvestiya. Mathematics , Tome 71 (2007) no. 5, pp. 895-938. http://geodesic.mathdoc.fr/item/IM2_2007_71_5_a1/