Multiplicative intersection theory and complex tropical varieties
Izvestiya. Mathematics , Tome 71 (2007) no. 4, pp. 673-720.

Voir la notice de l'article provenant de la source Math-Net.Ru

We develop an intersection theory for subvarieties of a torus. Besides the number of intersection points for a generic pair of subvarieties of complementary dimensions, this theory takes into account the product of these points as elements of the ambient torus. In the case of a complete intersection of divisors, our intersection theory yields Bernshtein's formula for the number of roots of a system as well as Khovanskii's formula for their product. When constructing this theory, we naturally encounter ‘piecewise-linear’ subsets of the torus which are referred to as complex tropical varieties.
@article{IM2_2007_71_4_a1,
     author = {B. Ya. Kazarnovskii},
     title = {Multiplicative intersection theory and complex tropical varieties},
     journal = {Izvestiya. Mathematics },
     pages = {673--720},
     publisher = {mathdoc},
     volume = {71},
     number = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_4_a1/}
}
TY  - JOUR
AU  - B. Ya. Kazarnovskii
TI  - Multiplicative intersection theory and complex tropical varieties
JO  - Izvestiya. Mathematics 
PY  - 2007
SP  - 673
EP  - 720
VL  - 71
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2007_71_4_a1/
LA  - en
ID  - IM2_2007_71_4_a1
ER  - 
%0 Journal Article
%A B. Ya. Kazarnovskii
%T Multiplicative intersection theory and complex tropical varieties
%J Izvestiya. Mathematics 
%D 2007
%P 673-720
%V 71
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2007_71_4_a1/
%G en
%F IM2_2007_71_4_a1
B. Ya. Kazarnovskii. Multiplicative intersection theory and complex tropical varieties. Izvestiya. Mathematics , Tome 71 (2007) no. 4, pp. 673-720. http://geodesic.mathdoc.fr/item/IM2_2007_71_4_a1/

[1] A. G. Khovanskii, “Newton polyhedra, a new formula for mixed volume, product of roots of a system of equations”, The Arnoldfest (Toronto, Canada, 1997), Fields Inst. Commun., 24, Amer. Math. Soc., Providence, RI, 1999, 325–364 | MR | Zbl

[2] B. Ya. Kazarnovskii, “$c$-veery i mnogogranniki Nyutona algebraicheskikh mnogoobrazii”, Izv. RAN. Ser. matem., 67:3 (2003), 23–44 | MR | Zbl

[3] O. A. Gel'fond, A. G. Khovanskii, “Toric geometry and Grothendieck residues”, Mosc. Math. J., 2:1 (2002), 99–112 | MR | Zbl

[4] O. A. Gelfond, “Kombinatornye koeffitsienty i smeshannyi ob'em mnogogrannikov”, Funkts. analiz i ego prilozh., 30:3 (1996), 77–79 | MR | Zbl

[5] I. Soprounov, “Residues and tame symbols on toroidal varieties”, Compos. Math., 140:6 (2004), 1593–1613 ; arXiv: math.AG/0203114 | MR | Zbl

[6] I. Soprounov, “On combinatorial coefficients and the Gelfond–Khovanskii residue formula”, Topics in algebraic geometry and geometric modeling (Vilnius, Lithuania, 2002), Contemp. Math., 334, Amer. Math. Soc., Providence, RI, 2003, 343–349 ; arXiv: math.AG/0310168 | MR | Zbl

[7] A. G. Khovanskii, “Mnogougolniki Nyutona, krivye na toricheskikh poverkhnostyakh i obraschenie teoremy Veilya”, UMN, 52:6 (1997), 113–143 | MR | Zbl

[8] C. De Concini, C. Procesi, “Complete symmetric varieties. II: Intersection theory”, Algebraic groups and related topics (Kyoto, Nagoya, 1983), Adv. Stud. Pure Math., 6, North-Holland, Amsterdam, 1985, 481–513 | MR | Zbl

[9] C. De Concini, “Equivariant embeddings of homogeneous spaces”, Proceedings of the international congress of mathematicians (Berkeley, USA, 1986), 1, Amer. Math. Soc., Providence, RI, 1987, 369–377 | MR | Zbl

[10] G. M. Bergman, “The logarithmic limit-set of an algebraic variety”, Trans. Amer. Math. Soc., 157 (1971), 459–469 | DOI | MR | Zbl

[11] W. Fulton, B. Sturmfels, “Intersection theory on toric varieties”, Topology, 36:2 (1997), 335–353 ; arXiv: alg-geom/9403002 | DOI | MR | Zbl

[12] D. N. Bernshtein, “Chislo kornei sistemy uravnenii”, Funkts. analiz i ego prilozh., 9:3 (1975), 1–4 | MR | Zbl

[13] J. Richter-Gebert, B. Sturmfels, T. Theobald, “First steps in tropical geometry”, Idempotent mathematics and mathematical physics (Vienna, Austria, 2003), Contemp. Math., 337, Amer. Math. Soc., Providence, RI, 2005, 289–317 ; arXiv: math.AG/0306366 | MR | Zbl

[14] G. Mikhalkin, “Amoebas of algebraic varieties and tropical geometry”, Different faces of geometry, Int. Math. Ser. (N. Y.), 3, Kluwer, Plenum, New York, 2004, 257–300 ; arXiv: math.AG/0403015 | MR | Zbl

[15] V. I. Danilov, “Geometriya toricheskikh mnogoobrazii”, UMN, 33:2 (1978), 85–134 | MR | Zbl

[16] B. Ya. Kazarnovskii, “Truncation of systems of polynomial equations, ideals and varieties”, Izv. Math., 63:3 (1999), 535–547 ; Б. Я. Казарновский, “Письмо в редакцию”, Изв. РАН. Сер. матем., 64:1 (2000), 224 ; B. Ya. Kazarnovskii, “Letter to the editors”, Izv. Math., 64:1 (2000), 221 | DOI | DOI | MR | MR | Zbl