Monoidal transformations and~conjectures on algebraic cycles
Izvestiya. Mathematics , Tome 71 (2007) no. 3, pp. 629-655
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the following conjectures:
$\operatorname{Hodge}(X)$, $\operatorname{Tate}(X)$
(over a perfect finitely generated field), Grothendieck's standard
conjecture $B(X)$ of Lefschetz type on the algebraicity of the Hodge
operator $\ast$, conjecture $D(X)$ on the coincidence
of the numerical and homological equivalences of algebraic cycles
and conjecture $C(X)$ on the algebraicity of Künneth components of the
diagonal for smooth complex projective varieties.
We show that they are compatible with
monoidal transformations: if one of them holds for a smooth
projective variety $X$ and a smooth closed subvariety
$Y\hookrightarrow X$, then it holds for $X'$, where $f\colon X'\to X$
is the blow up of $X$ along $Y$. All of these conjectures are reduced
to the case of rational varieties.
@article{IM2_2007_71_3_a8,
author = {S. G. Tankeev},
title = {Monoidal transformations and~conjectures on algebraic cycles},
journal = {Izvestiya. Mathematics },
pages = {629--655},
publisher = {mathdoc},
volume = {71},
number = {3},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_3_a8/}
}
S. G. Tankeev. Monoidal transformations and~conjectures on algebraic cycles. Izvestiya. Mathematics , Tome 71 (2007) no. 3, pp. 629-655. http://geodesic.mathdoc.fr/item/IM2_2007_71_3_a8/