Monoidal transformations and~conjectures on algebraic cycles
Izvestiya. Mathematics , Tome 71 (2007) no. 3, pp. 629-655

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the following conjectures: $\operatorname{Hodge}(X)$, $\operatorname{Tate}(X)$ (over a perfect finitely generated field), Grothendieck's standard conjecture $B(X)$ of Lefschetz type on the algebraicity of the Hodge operator $\ast$, conjecture $D(X)$ on the coincidence of the numerical and homological equivalences of algebraic cycles and conjecture $C(X)$ on the algebraicity of Künneth components of the diagonal for smooth complex projective varieties. We show that they are compatible with monoidal transformations: if one of them holds for a smooth projective variety $X$ and a smooth closed subvariety $Y\hookrightarrow X$, then it holds for $X'$, where $f\colon X'\to X$ is the blow up of $X$ along $Y$. All of these conjectures are reduced to the case of rational varieties.
@article{IM2_2007_71_3_a8,
     author = {S. G. Tankeev},
     title = {Monoidal transformations and~conjectures on algebraic cycles},
     journal = {Izvestiya. Mathematics },
     pages = {629--655},
     publisher = {mathdoc},
     volume = {71},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_3_a8/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - Monoidal transformations and~conjectures on algebraic cycles
JO  - Izvestiya. Mathematics 
PY  - 2007
SP  - 629
EP  - 655
VL  - 71
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2007_71_3_a8/
LA  - en
ID  - IM2_2007_71_3_a8
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T Monoidal transformations and~conjectures on algebraic cycles
%J Izvestiya. Mathematics 
%D 2007
%P 629-655
%V 71
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2007_71_3_a8/
%G en
%F IM2_2007_71_3_a8
S. G. Tankeev. Monoidal transformations and~conjectures on algebraic cycles. Izvestiya. Mathematics , Tome 71 (2007) no. 3, pp. 629-655. http://geodesic.mathdoc.fr/item/IM2_2007_71_3_a8/