Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2007_71_3_a5, author = {I. G. Kossovskii}, title = {On envelopes of holomorphy of model manifolds}, journal = {Izvestiya. Mathematics }, pages = {545--571}, publisher = {mathdoc}, volume = {71}, number = {3}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_3_a5/} }
I. G. Kossovskii. On envelopes of holomorphy of model manifolds. Izvestiya. Mathematics , Tome 71 (2007) no. 3, pp. 545-571. http://geodesic.mathdoc.fr/item/IM2_2007_71_3_a5/
[1] V. K. Beloshapka, “Universalnaya model veschestvennogo podmnogoobraziya”, Matem. zametki, 75:4 (2004), 507–522 | MR | Zbl
[2] T. Bloom, I. Graham, “On ‘type’ conditions for generic real submanifolds of $\mathbb C^n$”, Invent. Math., 40:3 (1997), 217–243 | DOI | MR | Zbl
[3] V. K. Beloshapka, “Veschestvennye podmnogoobraziya kompleksnogo prostranstva: ikh polinomialnye modeli, avtomorfizmy i problemy klassifikatsii”, UMN, 57:1 (2002), 3–44 | MR | Zbl
[4] V. K. Beloshapka, Teorema vlozheniya, http://www.strogino.ru/ṽkb/articles/teorema_vlozhenija.pdf
[5] V. K. Beloshapka, “Kubicheskaya model veschestvennogo mnogoobraziya”, Matem. zametki, 70:4 (2001), 503–519 | MR | Zbl
[6] I. Naruki, “Holomorphic extention problem for standard real submanifolds of second kind”, Publ. Res. Inst. Math. Sci., 6:1 (1970), 113–187 | DOI | MR | Zbl
[7] I. I. Pyatetskii-Shapiro, Geometriya klassicheskikh oblastei i teoriya avtomorfnykh funktsii, Fizmatgiz, M., 1961 ; I. I. Pyateskii-Shapiro, Automorphic functions and the geometry of classical domains, Math. Appl., 8, Gordon and Breach, New York–London–Paris, 1969 | Zbl | MR | Zbl
[8] R. V. Gammel, I. G. Kossovskii, “Obolochka golomorfnosti modelnoi poverkhnosti stepeni tri i fenomen zhestkosti”, Kompleksnyi analiz i prilozheniya, Tr. MIAN, 253, Nauka, M., 2006, 30–45 | MR
[9] A. E. Tumanov, “Prodolzhenie CR-funktsii v klin”, Matem. sb., 181:7 (1990), 951–964 ; A. E. Tumanov, “Extension of CR-functions into a wedge”, Math. USSR-Sb., 70:2 (1991), 385–398 | MR | Zbl | DOI
[10] V. K. Beloshapka, “Polinomialnye modeli veschestvennykh mnogoobrazii”, Izv. RAN. Ser. matem., 65:4 (2001), 3–20 | MR | Zbl
[11] B. V. Shabat, Vvedenie v kompleksnyi analiz. Ch. 2. Funktsii neskolkikh peremennykh, 3-e izd., Nauka, M., 1985 ; B. V. Shabat, Introduction to complex analysis. Part II. Functions of several variables, Transl. Math. Monogr., 110, Amer. Math. Soc., Providence, RI, 1992 | MR | Zbl | MR | Zbl
[12] E. N. Shananina, Polinomialnye modeli veschestvenno-analiticheskikh mnogoobrazii i algebry ikh avtomorfizmov, Dis. ... kand. fiz.-matem. nauk, MGU, M., 2006
[13] V. K. Beloshapka, “Moduli space of model real submanifolds”, Russ. J. Math. Phys., 13:3 (2006), 245–252 | DOI | MR | Zbl
[14] L. Khermander, Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, M., 1968 ; L. Hörmander, An introduction to complex analysis in several variables, D. Van Nostrand Co., Princeton–Toronto–London, 1966 | MR | Zbl | MR | Zbl
[15] E. Cartan, “Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes”, Ann. Mat. Pura Appl. (4), 11:1 (1933), 17–90 | DOI | MR | Zbl
[16] A. V. Loboda, “Odnorodnye veschestvennye giperpoverkhnosti v $\mathbb C^3$ s dvumernymi gruppami izotropii”, Analiticheskie i geometricheskie voprosy kompleksnogo analiza, K 70-letiyu so dnya rozhdeniya akad. A. G. Vitushkina, Tr. MIAN, 235, Nauka, M., 2001, 114–142 | MR | Zbl
[17] G. Fels, W. Kaup, CR-manifolds of dimension 5: A Lie algebra approach, arXiv: math.DS/0508011 | MR
[18] S. N. Shevchenko, “Opisanie algebry infinitezimalnykh avtomorfizmov kvadrik korazmernosti dva i ikh klassifikatsiya”, Matem. zametki, 55:5 (1994), 142–153 | MR | Zbl
[19] V. S. Vladimirov, Metody teorii funktsii mnogikh kompleksnykh peremennykh, Nauka, M., 1964 ; V. S. Vladimirov, Methods of the theory of functions of many complex variables, The M. I. T. Press, Cambridge–London, 1966 | MR | Zbl | MR