Baer invariants and residual nilpotence of groups
Izvestiya. Mathematics , Tome 71 (2007) no. 2, pp. 371-390.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study descending chains of subgroups in the Baer invariants, which naturally generalize the Dwyer filtration of the multiplicator of a group. We establish a connection between these structures and residual nilpotence of groups. As an application of our methods, we construct a finitely presented residually nilpotent group $F/R$ none of whose free $k$-central extensions $F/[R,_kF]$ ($k\geqslant 1$) is residually nilpotent. For $k=1,2$, it is shown that the residual nilpotence of a free product $G$ of one-relator groups is equivalent to the residual nilpotence of any $k$-central extension of $G$.
@article{IM2_2007_71_2_a4,
     author = {R. V. Mikhailov},
     title = {Baer invariants and residual nilpotence of groups},
     journal = {Izvestiya. Mathematics },
     pages = {371--390},
     publisher = {mathdoc},
     volume = {71},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_2_a4/}
}
TY  - JOUR
AU  - R. V. Mikhailov
TI  - Baer invariants and residual nilpotence of groups
JO  - Izvestiya. Mathematics 
PY  - 2007
SP  - 371
EP  - 390
VL  - 71
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2007_71_2_a4/
LA  - en
ID  - IM2_2007_71_2_a4
ER  - 
%0 Journal Article
%A R. V. Mikhailov
%T Baer invariants and residual nilpotence of groups
%J Izvestiya. Mathematics 
%D 2007
%P 371-390
%V 71
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2007_71_2_a4/
%G en
%F IM2_2007_71_2_a4
R. V. Mikhailov. Baer invariants and residual nilpotence of groups. Izvestiya. Mathematics , Tome 71 (2007) no. 2, pp. 371-390. http://geodesic.mathdoc.fr/item/IM2_2007_71_2_a4/

[1] G. Baumslag, U. Stammbach, “On the inverse limit of free nilpotent groups”, Comment. Math. Helv., 52:2 (1977), 219–233 | DOI | MR | Zbl

[2] A. K. Bousfield, “Homological localization towers for groups and $\Pi$-modules”, Mem. Amer. Math. Soc., 186 (1977) | MR | Zbl

[3] J. Burns, G. Ellis, “On the nilpotent multipliers of a group”, Math. Z., 226:3 (1997), 405–428 | DOI | MR | Zbl

[4] T. D. Cochran, K. E. Orr, “Stability of lower central series of compact 3-manifold groups”, Topology, 37:3 (1998), 497–526 | DOI | MR | Zbl

[5] G. Donadze, N. Inassaridze, T. Porter, “$N$-fold Čech derived functors and generalised Hopf type formulas”, $K$-Theory, 35:3-4 (2006), 341–373 ; arXiv: math/0303050 | DOI | MR

[6] G. Ellis, “A Magnus–Witt type isomorphism for non-free groups”, Georgian Math. J., 9:4 (2002), 703–708 | MR | Zbl

[7] W. G. Dwyer, “Homology, Massey products and maps between groups”, J. Pure Appl. Algebra, 6:2 (1975), 177–190 | DOI | MR | Zbl

[8] N. Gupta, Free group rings, Contemp. Math., 66, Amer. Math. Soc., Providence, RI, 1987 | MR | Zbl

[9] W. Magnus, “Über Beziehungen zwischen höheren Kommutatoren”, J. Reine Angew. Math., 177 (1937), 105–115 | Zbl

[10] J. McCarron, “Residually nilpotent one-relator groups with nontrivial centre”, Proc. Amer. Math. Soc., 124:1 (1996), 1–5 | DOI | MR | Zbl

[11] R. V. Mikhailov, “O nilpotentnoi i razreshimoi approksimiruemosti grupp”, Matem. sb., 196:11 (2005), 109–126 | MR

[12] R. V. Mikhailov, “Transfinitnye tsentralnye ryady v gruppakh: parasvobodnye svoistva i topologicheskie prilozheniya”, Diskretnaya geometriya i geometriya chisel, Sb. statei, posvyaschennyi 70-letiyu so dnya rozhdeniya professora S. S. Ryshkova, Tr. MIAN, 239, Nauka, MAIK “Nauka-Interperiodika”, M., 2002, 251–267 | MR | Zbl

[13] R. Mikhailov, I. B. S. Passi, “Faithfulness of certain modules and residual nilpotence of groups”, Internat. J. Algebra Comput., 16:3 (2006), 525–539 | DOI | MR | Zbl

[14] I. B. S. Passi, “Annihilators of relation modules – II”, J. Pure Appl. Algebra, 6:3 (1975), 235–237 | DOI | MR | Zbl