One-dimensional Fibonacci tilings
Izvestiya. Mathematics , Tome 71 (2007) no. 2, pp. 307-340

Voir la notice de l'article provenant de la source Math-Net.Ru

We use the $B$-operator to construct a family of Fibonacci tilings $\operatorname{Til}(\varepsilon_m)$ of the unit interval $I_0=[0,1)$ consisting of $F_{m+1}$ short and $F_{m+2}$ long elementary intervals with the ratio of the lengths equal to the golden section $\tau=\frac{1+\sqrt{5}}2$. We prove that the tilings $\operatorname{Til}(\varepsilon_m)$ satisfy a recurrence relation similar to the relation $F_{m+2}=F_{m+1}+F_m$ for the Fibonacci numbers. The ends of the elementary intervals in the tilings $\operatorname{Til}(\varepsilon_m)$ form a sequence of points $O_0$ whose derivatives $d^mO_0 = O_0 \cap [1-\tau^{-m},1)$ are sequences $O_m$ similar to the sequence $O_0$. We compute the direct $R_m(i)$ and inverse $R_{-m}(i)$ renormalizations for the sequences $O_m$. We establish a connection between our tilings and the Sturm sequence, and give some applications of the tilings $\operatorname{Til}(\varepsilon_m)$ in the theory of numbers.
@article{IM2_2007_71_2_a2,
     author = {V. G. Zhuravlev},
     title = {One-dimensional {Fibonacci} tilings},
     journal = {Izvestiya. Mathematics },
     pages = {307--340},
     publisher = {mathdoc},
     volume = {71},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_2_a2/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - One-dimensional Fibonacci tilings
JO  - Izvestiya. Mathematics 
PY  - 2007
SP  - 307
EP  - 340
VL  - 71
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2007_71_2_a2/
LA  - en
ID  - IM2_2007_71_2_a2
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T One-dimensional Fibonacci tilings
%J Izvestiya. Mathematics 
%D 2007
%P 307-340
%V 71
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2007_71_2_a2/
%G en
%F IM2_2007_71_2_a2
V. G. Zhuravlev. One-dimensional Fibonacci tilings. Izvestiya. Mathematics , Tome 71 (2007) no. 2, pp. 307-340. http://geodesic.mathdoc.fr/item/IM2_2007_71_2_a2/