One-dimensional Fibonacci tilings
Izvestiya. Mathematics , Tome 71 (2007) no. 2, pp. 307-340.

Voir la notice de l'article provenant de la source Math-Net.Ru

We use the $B$-operator to construct a family of Fibonacci tilings $\operatorname{Til}(\varepsilon_m)$ of the unit interval $I_0=[0,1)$ consisting of $F_{m+1}$ short and $F_{m+2}$ long elementary intervals with the ratio of the lengths equal to the golden section $\tau=\frac{1+\sqrt{5}}2$. We prove that the tilings $\operatorname{Til}(\varepsilon_m)$ satisfy a recurrence relation similar to the relation $F_{m+2}=F_{m+1}+F_m$ for the Fibonacci numbers. The ends of the elementary intervals in the tilings $\operatorname{Til}(\varepsilon_m)$ form a sequence of points $O_0$ whose derivatives $d^mO_0 = O_0 \cap [1-\tau^{-m},1)$ are sequences $O_m$ similar to the sequence $O_0$. We compute the direct $R_m(i)$ and inverse $R_{-m}(i)$ renormalizations for the sequences $O_m$. We establish a connection between our tilings and the Sturm sequence, and give some applications of the tilings $\operatorname{Til}(\varepsilon_m)$ in the theory of numbers.
@article{IM2_2007_71_2_a2,
     author = {V. G. Zhuravlev},
     title = {One-dimensional {Fibonacci} tilings},
     journal = {Izvestiya. Mathematics },
     pages = {307--340},
     publisher = {mathdoc},
     volume = {71},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_2_a2/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - One-dimensional Fibonacci tilings
JO  - Izvestiya. Mathematics 
PY  - 2007
SP  - 307
EP  - 340
VL  - 71
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2007_71_2_a2/
LA  - en
ID  - IM2_2007_71_2_a2
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T One-dimensional Fibonacci tilings
%J Izvestiya. Mathematics 
%D 2007
%P 307-340
%V 71
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2007_71_2_a2/
%G en
%F IM2_2007_71_2_a2
V. G. Zhuravlev. One-dimensional Fibonacci tilings. Izvestiya. Mathematics , Tome 71 (2007) no. 2, pp. 307-340. http://geodesic.mathdoc.fr/item/IM2_2007_71_2_a2/

[1] V. G. Zhuravlev, “Razbieniya Rozi i mnozhestva ogranichennogo ostatka”, Zapiski nauch. sem. POMI, 322, 2005, 83–106 | MR | Zbl

[2] N. N. Manuilov, “Chislo popadanii tochek posledovatelnosti $\{n\tau_g\}$ v poluinterval”, Chebyshevskii sb., 5:3 (2004), 72–81 | MR

[3] I. P. Kornfeld, Ya. G. Sinai, S. V. Fomin, Ergodicheskaya teoriya, Nauka, M., 1980 ; I. P. Kornfel'd, Ya. G. Sinai, S. V. Fomin, Ergodic theory, Grundlehren der Mathematischen Wissenschaften, 245, Springer-Verlag, New York, 1982 | MR | Zbl | MR | Zbl

[4] A. V. Shutov, “O raspredelenii drobnykh dolei”, Chebyshevskii sb., 5:3 (2004), 112–121 | MR

[5] P. Arnoux, V. Berthé, H. Ei, S. Ito, “Tilings, quasicrystals, discrete planes, generalized substitutions, and multidimensional continued fractions”, Discrete models: combinatorics, computation, and geometry, Proceedings of the 1st international conference (DM-CCG) (Paris, 2001), Discrete Math. Theor. Comput. Sci. Proc., AA, Maison Inform. Math. Discrèt. (MIMD), Paris, 2001, 059–078 | MR | Zbl

[6] N. G. de Brujin, “Sequences of zeros and ones generated by special production rules”, Nederl. Akad. Wetensch. Indag. Math., 43:1 (1981), 27–37 | MR | Zbl

[7] N. G. de Brujin, “Updown generation of Beatty sequences”, Nederl. Akad. Wetensch. Indag. Math., 51:4 (1989), 385–407 | MR | Zbl

[8] N. P. Fogg, Substitutions in dynamics, arithmetics and combinatirics, Lecture Notes in Math., 1794, Springer-Verlag, Berlin, 2002 | MR | Zbl

[9] E. Hecke, “Über analytische Funktionen und die Verteilung von Zahlen mod. eins”, Hamb. Abh., 1 (1921), 54–76 | DOI | Zbl

[10] M. Morse, G. A. Hedlund, “Symbolic dynamics. II. Sturmian trajectories”, Amer. J. Math., 62:1/4 (1940), 1–42 | DOI | MR | Zbl

[11] G. Rauzy, “Des mots en arithmétique”, Avignon conference on language theory and algorithmic complexity (Avignon, 1983), Publ. Dep. Math. Nouvelle Ser. B, 84-6, Univ. Claude-Bernard, Lyon, 1984, 103–113 | MR | Zbl

[12] G. Rauzy, “Nombres algébriques et substitutions”, Bull. Soc. Math. France, 110:2 (1982), 147–178 | MR | Zbl

[13] V. G. Zhuravlev, “One-dimensional Fibonacci tilings and derivatives of two-colour rotations of a circle”, Max-Plank-Institut für Mathematik. Preprint Series, 59 (2004), 1–43 ; http://www.mpim-bonn.mpg.de/preprints/send?bid=2359 | MR

[14] A. V. Shutov, V. G. Zhuravlev, “Derivatives of circle rotations and similarity of orbits”, Max-Plank-Institut für mathematik. Preprint Series, 62 (2004), 1–11 ; http://www.mpim-bonn.mpg.de/preprints/send?bid=2367 | MR

[15] V. G. Zhuravlev, “On parametrization of the infinite Rauzy tiling”, Abstracts of Communications of the International conference “Analytical Methods in Number Theory, Probability Theory and Mathematical Statistics” (St. Petersburg, Russia, 2005), POMI, St. Petersburg, 2005, 10–11