One-dimensional Fibonacci tilings
Izvestiya. Mathematics , Tome 71 (2007) no. 2, pp. 307-340
Voir la notice de l'article provenant de la source Math-Net.Ru
We use the $B$-operator to construct a family of Fibonacci tilings
$\operatorname{Til}(\varepsilon_m)$ of the unit interval $I_0=[0,1)$
consisting of $F_{m+1}$ short and $F_{m+2}$ long elementary intervals
with the ratio of the lengths equal to the golden section
$\tau=\frac{1+\sqrt{5}}2$. We prove that the tilings
$\operatorname{Til}(\varepsilon_m)$ satisfy a recurrence relation similar
to the relation $F_{m+2}=F_{m+1}+F_m$ for the Fibonacci numbers.
The ends
of the elementary intervals in the tilings $\operatorname{Til}(\varepsilon_m)$
form a sequence of points $O_0$ whose derivatives
$d^mO_0 = O_0 \cap [1-\tau^{-m},1)$
are sequences $O_m$ similar to the
sequence $O_0$. We compute the direct $R_m(i)$ and inverse $R_{-m}(i)$
renormalizations for the sequences $O_m$. We establish a connection between
our tilings and the Sturm sequence, and give some applications of the tilings
$\operatorname{Til}(\varepsilon_m)$ in the theory of numbers.
@article{IM2_2007_71_2_a2,
author = {V. G. Zhuravlev},
title = {One-dimensional {Fibonacci} tilings},
journal = {Izvestiya. Mathematics },
pages = {307--340},
publisher = {mathdoc},
volume = {71},
number = {2},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_2_a2/}
}
V. G. Zhuravlev. One-dimensional Fibonacci tilings. Izvestiya. Mathematics , Tome 71 (2007) no. 2, pp. 307-340. http://geodesic.mathdoc.fr/item/IM2_2007_71_2_a2/