The number of invariant Einstein metrics on a homogeneous space, Newton polytopes and contractions of Lie algebras
Izvestiya. Mathematics , Tome 71 (2007) no. 2, pp. 247-306

Voir la notice de l'article provenant de la source Math-Net.Ru

To every homogeneous space $M=G/H$ of a Lie group $G$ with a compact isotropy group $H$, where the isotropy representation consists of $d$ irreducible components of multiplicity $1$, we assign a compact convex polytope $P=P_M$ in $\mathbb R^{d-1}$, namely, the Newton polytope of the rational function $s(t)$ defined to be the scalar curvature of the invariant metric $t$ on $M$. If $G$ is a compact semisimple group, then the ratio of the volume of $P$ to the volume of the standard $(d-1)$-simplex is a positive integer $\nu(M)>0$. We note that in many cases, $\nu(M)$ coincides with the number $\mathcal E(M)$ of isolated invariant holomorphic Einstein metrics (up to homothety) on $M^{\mathbb C}=G^{\mathbb C}/H^{\mathbb C}$. We deduce from results of Kushnirenko and Bernshtein that in all cases, $\delta_M=\nu(M)-\mathcal E(M)\geqslant0$. To every proper face $\gamma$ of $P$ we assign a non-compact homogeneous space $M_\gamma=G_\gamma/H_P$ with Newton polytope $\gamma$ that is a contraction of $M$. The appearance of a “defect” $\delta_M>0$ is explained by the fact that there is a Ricci-flat holomorphic invariant metric on the complexification of at least one of the $M_\gamma$.
@article{IM2_2007_71_2_a1,
     author = {M. M. Graev},
     title = {The number of invariant {Einstein} metrics on a homogeneous space, {Newton} polytopes and contractions of {Lie} algebras},
     journal = {Izvestiya. Mathematics },
     pages = {247--306},
     publisher = {mathdoc},
     volume = {71},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_2_a1/}
}
TY  - JOUR
AU  - M. M. Graev
TI  - The number of invariant Einstein metrics on a homogeneous space, Newton polytopes and contractions of Lie algebras
JO  - Izvestiya. Mathematics 
PY  - 2007
SP  - 247
EP  - 306
VL  - 71
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2007_71_2_a1/
LA  - en
ID  - IM2_2007_71_2_a1
ER  - 
%0 Journal Article
%A M. M. Graev
%T The number of invariant Einstein metrics on a homogeneous space, Newton polytopes and contractions of Lie algebras
%J Izvestiya. Mathematics 
%D 2007
%P 247-306
%V 71
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2007_71_2_a1/
%G en
%F IM2_2007_71_2_a1
M. M. Graev. The number of invariant Einstein metrics on a homogeneous space, Newton polytopes and contractions of Lie algebras. Izvestiya. Mathematics , Tome 71 (2007) no. 2, pp. 247-306. http://geodesic.mathdoc.fr/item/IM2_2007_71_2_a1/