Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2007_71_2_a1, author = {M. M. Graev}, title = {The number of invariant {Einstein} metrics on a homogeneous space, {Newton} polytopes and contractions of {Lie} algebras}, journal = {Izvestiya. Mathematics }, pages = {247--306}, publisher = {mathdoc}, volume = {71}, number = {2}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_2_a1/} }
TY - JOUR AU - M. M. Graev TI - The number of invariant Einstein metrics on a homogeneous space, Newton polytopes and contractions of Lie algebras JO - Izvestiya. Mathematics PY - 2007 SP - 247 EP - 306 VL - 71 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2007_71_2_a1/ LA - en ID - IM2_2007_71_2_a1 ER -
M. M. Graev. The number of invariant Einstein metrics on a homogeneous space, Newton polytopes and contractions of Lie algebras. Izvestiya. Mathematics , Tome 71 (2007) no. 2, pp. 247-306. http://geodesic.mathdoc.fr/item/IM2_2007_71_2_a1/
[1] D. V. Alekseevskii, A. M. Perelomov, “Invariantnye metriki Kelera–Einshteina na kompaktnykh odnorodnykh prostranstvakh”, Funkts. analiz i ego prilozh., 20:3 (1986), 1–16 | MR | Zbl
[2] A. L. Besse, Mnogoobraziya Einshteina, t. 1, 2, Mir, M., 1990 ; A. L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 10, Springer-Verlag, Berlin, 1987 | MR | Zbl | MR | Zbl
[3] F. A. Griffits, Dzh. Kharris, Printsipy algebraicheskoi geometrii, t. 2, Mir, M., 1982 ; P. Griffiths, J. Harris, Principles of algebraic geometry, vol. 2, Pure Appl. Math., J. Wiley Sons, New York, 1978 | MR | Zbl | MR | Zbl
[4] V. I. Arnold, A. N. Varchenko, S. M. Gusein-Zade, Osobennosti differentsiruemykh otobrazhenii. Klassifikatsiya kriticheskikh tochek, kaustik i volnovykh frontov, Nauka, M., 1982 ; V. I. Arnol'd, S. M. Gusejn-Zade, A. N. Varchenko, Singularities of differentiable maps, vol. I: The classification of critical points, caustics and wave fronts, Monogr. Math., 82, Birkhäuser, Boston, 1985 ; vol. II: Monodromy and asymptotics of integrals, Monogr. Math., 83, Birkhäuser, Boston, MA, 1988 | MR | Zbl | MR | Zbl | MR | Zbl
[5] D. N. Bernshtein, “Chislo kornei sistemy uravnenii”, Funkts. analiz i ego prilozh., 9:3 (1975), 1–4 | MR | Zbl
[6] A. G. Kouchnirenko, “Polyèdres de Newton et nombres de Milnor”, Invent. Math., 32:1 (1976), 1–31 | DOI | MR | Zbl
[7] A. G. Kushnirenko, “Mnogogranniki Nyutona i teorema Bezu”, Funkts. analiz i ego prilozh., 10:3 (1976), 82–83 | MR | Zbl
[8] G. R. Jensen, “The scalar curvature of left-invariant Riemannian metrics”, Indiana Univ. Math. J., 20 (1971), 1125–1144 | DOI | MR | Zbl
[9] M. Kimura, “Homogeneous Einstein metrics on certain Kähler $C$-spaces”, Recent topics in differential and analytic geometry, Adv. Stud. Pure Math., 18-I, Academic Press, Boston, MA, 1990, 303–320 | MR | Zbl
[10] Sh. Kobayasi, K. Nomidzu, Osnovy differentsialnoi geometrii, t. 1, 2, Nauka, M., 1981 ; Sh. Kobayashi, K. Nomizu, Foundations of differential geometry, vol. 1, Interscience Publ., New York, 1963 ; vol. 2, 1969 | MR | MR | Zbl | Zbl | MR | Zbl | MR | Zbl
[11] C. Böhm, M. Kerr, “Low dimensional homogeneous Einstein manifolds”, Trans. Amer. Math. Soc., 358:4 (2006), 1455–1468 | DOI | MR | Zbl
[12] A. L. Onischik, “Otnosheniya vklyucheniya mezhdu tranzitivnymi kompaktnymi gruppami preobrazovanii”, Tr. MMO, 11 (1962), 199–242 | Zbl