The number of invariant Einstein metrics on a homogeneous space, Newton polytopes and contractions of Lie algebras
Izvestiya. Mathematics , Tome 71 (2007) no. 2, pp. 247-306.

Voir la notice de l'article provenant de la source Math-Net.Ru

To every homogeneous space $M=G/H$ of a Lie group $G$ with a compact isotropy group $H$, where the isotropy representation consists of $d$ irreducible components of multiplicity $1$, we assign a compact convex polytope $P=P_M$ in $\mathbb R^{d-1}$, namely, the Newton polytope of the rational function $s(t)$ defined to be the scalar curvature of the invariant metric $t$ on $M$. If $G$ is a compact semisimple group, then the ratio of the volume of $P$ to the volume of the standard $(d-1)$-simplex is a positive integer $\nu(M)>0$. We note that in many cases, $\nu(M)$ coincides with the number $\mathcal E(M)$ of isolated invariant holomorphic Einstein metrics (up to homothety) on $M^{\mathbb C}=G^{\mathbb C}/H^{\mathbb C}$. We deduce from results of Kushnirenko and Bernshtein that in all cases, $\delta_M=\nu(M)-\mathcal E(M)\geqslant0$. To every proper face $\gamma$ of $P$ we assign a non-compact homogeneous space $M_\gamma=G_\gamma/H_P$ with Newton polytope $\gamma$ that is a contraction of $M$. The appearance of a “defect” $\delta_M>0$ is explained by the fact that there is a Ricci-flat holomorphic invariant metric on the complexification of at least one of the $M_\gamma$.
@article{IM2_2007_71_2_a1,
     author = {M. M. Graev},
     title = {The number of invariant {Einstein} metrics on a homogeneous space, {Newton} polytopes and contractions of {Lie} algebras},
     journal = {Izvestiya. Mathematics },
     pages = {247--306},
     publisher = {mathdoc},
     volume = {71},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_2_a1/}
}
TY  - JOUR
AU  - M. M. Graev
TI  - The number of invariant Einstein metrics on a homogeneous space, Newton polytopes and contractions of Lie algebras
JO  - Izvestiya. Mathematics 
PY  - 2007
SP  - 247
EP  - 306
VL  - 71
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2007_71_2_a1/
LA  - en
ID  - IM2_2007_71_2_a1
ER  - 
%0 Journal Article
%A M. M. Graev
%T The number of invariant Einstein metrics on a homogeneous space, Newton polytopes and contractions of Lie algebras
%J Izvestiya. Mathematics 
%D 2007
%P 247-306
%V 71
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2007_71_2_a1/
%G en
%F IM2_2007_71_2_a1
M. M. Graev. The number of invariant Einstein metrics on a homogeneous space, Newton polytopes and contractions of Lie algebras. Izvestiya. Mathematics , Tome 71 (2007) no. 2, pp. 247-306. http://geodesic.mathdoc.fr/item/IM2_2007_71_2_a1/

[1] D. V. Alekseevskii, A. M. Perelomov, “Invariantnye metriki Kelera–Einshteina na kompaktnykh odnorodnykh prostranstvakh”, Funkts. analiz i ego prilozh., 20:3 (1986), 1–16 | MR | Zbl

[2] A. L. Besse, Mnogoobraziya Einshteina, t. 1, 2, Mir, M., 1990 ; A. L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 10, Springer-Verlag, Berlin, 1987 | MR | Zbl | MR | Zbl

[3] F. A. Griffits, Dzh. Kharris, Printsipy algebraicheskoi geometrii, t. 2, Mir, M., 1982 ; P. Griffiths, J. Harris, Principles of algebraic geometry, vol. 2, Pure Appl. Math., J. Wiley Sons, New York, 1978 | MR | Zbl | MR | Zbl

[4] V. I. Arnold, A. N. Varchenko, S. M. Gusein-Zade, Osobennosti differentsiruemykh otobrazhenii. Klassifikatsiya kriticheskikh tochek, kaustik i volnovykh frontov, Nauka, M., 1982 ; V. I. Arnol'd, S. M. Gusejn-Zade, A. N. Varchenko, Singularities of differentiable maps, vol. I: The classification of critical points, caustics and wave fronts, Monogr. Math., 82, Birkhäuser, Boston, 1985 ; vol. II: Monodromy and asymptotics of integrals, Monogr. Math., 83, Birkhäuser, Boston, MA, 1988 | MR | Zbl | MR | Zbl | MR | Zbl

[5] D. N. Bernshtein, “Chislo kornei sistemy uravnenii”, Funkts. analiz i ego prilozh., 9:3 (1975), 1–4 | MR | Zbl

[6] A. G. Kouchnirenko, “Polyèdres de Newton et nombres de Milnor”, Invent. Math., 32:1 (1976), 1–31 | DOI | MR | Zbl

[7] A. G. Kushnirenko, “Mnogogranniki Nyutona i teorema Bezu”, Funkts. analiz i ego prilozh., 10:3 (1976), 82–83 | MR | Zbl

[8] G. R. Jensen, “The scalar curvature of left-invariant Riemannian metrics”, Indiana Univ. Math. J., 20 (1971), 1125–1144 | DOI | MR | Zbl

[9] M. Kimura, “Homogeneous Einstein metrics on certain Kähler $C$-spaces”, Recent topics in differential and analytic geometry, Adv. Stud. Pure Math., 18-I, Academic Press, Boston, MA, 1990, 303–320 | MR | Zbl

[10] Sh. Kobayasi, K. Nomidzu, Osnovy differentsialnoi geometrii, t. 1, 2, Nauka, M., 1981 ; Sh. Kobayashi, K. Nomizu, Foundations of differential geometry, vol. 1, Interscience Publ., New York, 1963 ; vol. 2, 1969 | MR | MR | Zbl | Zbl | MR | Zbl | MR | Zbl

[11] C. Böhm, M. Kerr, “Low dimensional homogeneous Einstein manifolds”, Trans. Amer. Math. Soc., 358:4 (2006), 1455–1468 | DOI | MR | Zbl

[12] A. L. Onischik, “Otnosheniya vklyucheniya mezhdu tranzitivnymi kompaktnymi gruppami preobrazovanii”, Tr. MMO, 11 (1962), 199–242 | Zbl