Entropy characteristics of subsets of states. II
Izvestiya. Mathematics , Tome 71 (2007) no. 1, pp. 181-218

Voir la notice de l'article provenant de la source Math-Net.Ru

We study properties of the $\chi$-capacity (regarded as a function of sets of quantum states) in the infinite-dimensional case. We consider various subsets of states and determine their $\chi$-capacity and optimal average. We construct counterexamples that illustrate general results. The possibility of “finite-dimensional approximations” of the $\chi$-capacity and optimal average is shown for an arbitrary set of quantum states.
@article{IM2_2007_71_1_a8,
     author = {M. E. Shirokov},
     title = {Entropy characteristics of subsets of states. {II}},
     journal = {Izvestiya. Mathematics },
     pages = {181--218},
     publisher = {mathdoc},
     volume = {71},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a8/}
}
TY  - JOUR
AU  - M. E. Shirokov
TI  - Entropy characteristics of subsets of states. II
JO  - Izvestiya. Mathematics 
PY  - 2007
SP  - 181
EP  - 218
VL  - 71
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a8/
LA  - en
ID  - IM2_2007_71_1_a8
ER  - 
%0 Journal Article
%A M. E. Shirokov
%T Entropy characteristics of subsets of states. II
%J Izvestiya. Mathematics 
%D 2007
%P 181-218
%V 71
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a8/
%G en
%F IM2_2007_71_1_a8
M. E. Shirokov. Entropy characteristics of subsets of states. II. Izvestiya. Mathematics , Tome 71 (2007) no. 1, pp. 181-218. http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a8/