Entropy characteristics of subsets of states. II
Izvestiya. Mathematics , Tome 71 (2007) no. 1, pp. 181-218
Voir la notice de l'article provenant de la source Math-Net.Ru
We study properties of the $\chi$-capacity (regarded as a function
of sets of quantum states) in the infinite-dimensional case. We consider
various subsets of states and determine their $\chi$-capacity and
optimal average. We construct counterexamples that
illustrate general results. The possibility of “finite-dimensional
approximations” of the $\chi$-capacity and optimal average is shown
for an arbitrary set of quantum states.
@article{IM2_2007_71_1_a8,
author = {M. E. Shirokov},
title = {Entropy characteristics of subsets of states. {II}},
journal = {Izvestiya. Mathematics },
pages = {181--218},
publisher = {mathdoc},
volume = {71},
number = {1},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a8/}
}
M. E. Shirokov. Entropy characteristics of subsets of states. II. Izvestiya. Mathematics , Tome 71 (2007) no. 1, pp. 181-218. http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a8/