Approximation by step functions of functions belonging to Sobolev spaces
Izvestiya. Mathematics , Tome 71 (2007) no. 1, pp. 149-180

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the approximation of functions belonging to the Sobolev spaces $W^1_\infty$ and $W^1_2$ by functions of the form $\varphi=\sum_{k=1}^n a_k \chi_{[x_k,x_k+d]}$. The results obtained are applied to the study of the stability of solutions of non-linear second-order differential equations of a special form. We consider the problem of whether two solutions can coincide given supplementary information in terms of the values of the functionals $l_{x_k}(u)=\frac{1}{d}\int_{x_k}^{x_k+d}u(t)\,dt$, $k=1,\dots,n$, defined on the solutions.
@article{IM2_2007_71_1_a7,
     author = {T. Yu. Semenova},
     title = {Approximation by step functions of functions belonging to {Sobolev} spaces},
     journal = {Izvestiya. Mathematics },
     pages = {149--180},
     publisher = {mathdoc},
     volume = {71},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a7/}
}
TY  - JOUR
AU  - T. Yu. Semenova
TI  - Approximation by step functions of functions belonging to Sobolev spaces
JO  - Izvestiya. Mathematics 
PY  - 2007
SP  - 149
EP  - 180
VL  - 71
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a7/
LA  - en
ID  - IM2_2007_71_1_a7
ER  - 
%0 Journal Article
%A T. Yu. Semenova
%T Approximation by step functions of functions belonging to Sobolev spaces
%J Izvestiya. Mathematics 
%D 2007
%P 149-180
%V 71
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a7/
%G en
%F IM2_2007_71_1_a7
T. Yu. Semenova. Approximation by step functions of functions belonging to Sobolev spaces. Izvestiya. Mathematics , Tome 71 (2007) no. 1, pp. 149-180. http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a7/