Approximation by step functions of functions belonging to Sobolev spaces
Izvestiya. Mathematics , Tome 71 (2007) no. 1, pp. 149-180
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper deals with the approximation of functions belonging to the Sobolev
spaces $W^1_\infty$ and $W^1_2$ by functions of the form
$\varphi=\sum_{k=1}^n a_k \chi_{[x_k,x_k+d]}$.
The results obtained are
applied to the study of the stability of solutions of non-linear second-order
differential equations of a special form. We consider the problem of whether
two solutions can coincide given supplementary information in terms
of the values of the functionals
$l_{x_k}(u)=\frac{1}{d}\int_{x_k}^{x_k+d}u(t)\,dt$, $k=1,\dots,n$, defined
on the solutions.
@article{IM2_2007_71_1_a7,
author = {T. Yu. Semenova},
title = {Approximation by step functions of functions belonging to {Sobolev} spaces},
journal = {Izvestiya. Mathematics },
pages = {149--180},
publisher = {mathdoc},
volume = {71},
number = {1},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a7/}
}
T. Yu. Semenova. Approximation by step functions of functions belonging to Sobolev spaces. Izvestiya. Mathematics , Tome 71 (2007) no. 1, pp. 149-180. http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a7/