Approximation by step functions of functions belonging to Sobolev spaces
Izvestiya. Mathematics , Tome 71 (2007) no. 1, pp. 149-180.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the approximation of functions belonging to the Sobolev spaces $W^1_\infty$ and $W^1_2$ by functions of the form $\varphi=\sum_{k=1}^n a_k \chi_{[x_k,x_k+d]}$. The results obtained are applied to the study of the stability of solutions of non-linear second-order differential equations of a special form. We consider the problem of whether two solutions can coincide given supplementary information in terms of the values of the functionals $l_{x_k}(u)=\frac{1}{d}\int_{x_k}^{x_k+d}u(t)\,dt$, $k=1,\dots,n$, defined on the solutions.
@article{IM2_2007_71_1_a7,
     author = {T. Yu. Semenova},
     title = {Approximation by step functions of functions belonging to {Sobolev} spaces},
     journal = {Izvestiya. Mathematics },
     pages = {149--180},
     publisher = {mathdoc},
     volume = {71},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a7/}
}
TY  - JOUR
AU  - T. Yu. Semenova
TI  - Approximation by step functions of functions belonging to Sobolev spaces
JO  - Izvestiya. Mathematics 
PY  - 2007
SP  - 149
EP  - 180
VL  - 71
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a7/
LA  - en
ID  - IM2_2007_71_1_a7
ER  - 
%0 Journal Article
%A T. Yu. Semenova
%T Approximation by step functions of functions belonging to Sobolev spaces
%J Izvestiya. Mathematics 
%D 2007
%P 149-180
%V 71
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a7/
%G en
%F IM2_2007_71_1_a7
T. Yu. Semenova. Approximation by step functions of functions belonging to Sobolev spaces. Izvestiya. Mathematics , Tome 71 (2007) no. 1, pp. 149-180. http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a7/

[1] A. N. Kolmogorov, Izbrannye trudy. Matematika i mekhanika, Nauka, M., 1985 ; A. N. Kolmogorov, Selected works of A. N. Kolmogorov. Volume I: Mathematics and mechanics, Mathematics and its Applications (Sov. Ser.), 25, Kluwer Acad. Publ., Dordrecht, 1991 | MR | Zbl | MR | Zbl

[2] V. M. Tikhomirov, “Teoriya priblizhenii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundam. napravleniya, 14, VINITI, M., 1987, 103–260 | MR

[3] O. A. Ladyzhenskaya, “Ob otsenkakh fraktalnoi razmernosti i chisla opredelyayuschikh mod dlya invariantnykh mnozhestv dinamicheskikh sistem”, Zap. nauch. semin. LOMI, 163, 1987, 105–129 ; O. A. Ladyzhenskaya, “Estimates for the fractal dimension and number of deterministic modes for invariant sets of dynamical systems”, J. Soviet Math., 49:5 (1990), 1186–1201 | MR | Zbl | DOI | Zbl

[4] D. A. Jones, E. S. Titi, “Upper bounds on the number of determining modes, nodes and volume elements for Navier–Stokes equations”, Indiana Univ. Math. J., 42:3 (1993), 875–887 | DOI | MR | Zbl

[5] D. A. Jones, E. S. Titi, “Determining finite volume elements for the 2D Navier–Stokes equations”, Phys. D, 60 (1992), 165–174 | DOI | MR | Zbl

[6] I. D. Chueshov, “Zamechanie o mnozhestvakh opredelyayuschikh elementov dlya sistem reaktsii–diffuzii”, Matem. zametki, 63:5 (1998), 774–784 | MR | Zbl

[7] I. D. Chueshov, “Teoriya funktsionalov, odnoznachno opredelyayuschikh asimptoticheskuyu dinamiku beskonechnomernykh dissipativnykh sistem”, UMN, 53:4 (1998), 77–124 | MR | Zbl

[8] I. G. Tsarkov, “Ustoichivost odnoznachnoi razreshimosti v nekorrektnoi zadache Dirikhle”, Matem. zametki, 79:2 (2006), 294–308 | MR

[9] R. S. Ismagilov, “Poperechniki mnozhestv v lineinykh normirovannykh prostranstvakh i priblizhenie funktsii trigonometricheskimi mnogochlenami”, UMN, 29:3 (1974), 161–178 | MR | Zbl

[10] Dzh. Sansone, Obyknovennye differentsialnye uravneniya, v. 1, 2, IL, M., 1954 ; G. Sansone, Ordinary differential equations, Nicola Zanichelli, Bologna, 1948 (Italian) | MR | MR

[11] O. V. Besov, V. P. Ilin, S. M. Nikolskii, Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 ; O. V. Besov, V. P. Il'in, S. M. Nikol'skiĭ, Integral representations of functions and embedding theorems, v. I, V. H. Winston Sons, Washington, DC, 1978 ; v. II, 1979 | MR | Zbl | MR | Zbl | MR | Zbl