The influence of viscosity on oscillations in~some linearized problems of hydrodynamics
Izvestiya. Mathematics , Tome 71 (2007) no. 1, pp. 97-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish results on the asymptotic behaviour of solutions of non-stationary linearized equations of hydrodynamics with a small viscosity coefficient and periodic data oscillating rapidly with respect to the spatial variables. We obtain boundary-layer terms, homogenized (limiting) equations and cell problems (whose solutions determine approximate asymptotics of solutions of the equations under consideration) and obtain estimates for the accuracy of the asymptotics. The form of the asymptotics depends strongly on the mutual asymptotic behaviour of the viscosity coefficient and the periodicity parameter that characterizes rapid oscillations of the data. When the viscosity coefficient is very small, the asymptotics can contain rapidly oscillating terms that increase linearly with respect to the time variable. Similar theorems are proved for non-stationary Stokes equations and partial results are obtained for non-stationary Navier–Stokes equations.
@article{IM2_2007_71_1_a6,
     author = {G. V. Sandrakov},
     title = {The influence of viscosity on oscillations in~some linearized problems of hydrodynamics},
     journal = {Izvestiya. Mathematics },
     pages = {97--148},
     publisher = {mathdoc},
     volume = {71},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a6/}
}
TY  - JOUR
AU  - G. V. Sandrakov
TI  - The influence of viscosity on oscillations in~some linearized problems of hydrodynamics
JO  - Izvestiya. Mathematics 
PY  - 2007
SP  - 97
EP  - 148
VL  - 71
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a6/
LA  - en
ID  - IM2_2007_71_1_a6
ER  - 
%0 Journal Article
%A G. V. Sandrakov
%T The influence of viscosity on oscillations in~some linearized problems of hydrodynamics
%J Izvestiya. Mathematics 
%D 2007
%P 97-148
%V 71
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a6/
%G en
%F IM2_2007_71_1_a6
G. V. Sandrakov. The influence of viscosity on oscillations in~some linearized problems of hydrodynamics. Izvestiya. Mathematics , Tome 71 (2007) no. 1, pp. 97-148. http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a6/

[1] R. Temam, Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 ; R. Temam, Navier–Stokes equations. Theory and numerical analysis, Stud. Math. Appl., 2, North-Holland, Amsterdam, 1977 | MR | Zbl | MR | Zbl

[2] N. C. Bakhvalov, G. P. Panasenko, Osrednenie protsessov v periodicheskikh sredakh. Matematicheskie zadachi mekhaniki kompozitsionnykh materialov, Nauka, M., 1984 ; N. Bakhvalov, G. Panasenko, Homogenisation: Averaging processes in periodic media. Mathematical problems in the mechanics of composite materials, Mathematics and its Applications (Sov. Ser.), 36, Kluwer Acad. Publ., Dordrecht, 1989 | MR | Zbl | MR | Zbl

[3] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 ; O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Gordon and Breach Sci. Publ., New York, 1963 | MR | Zbl | MR | Zbl

[4] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 ; T. Kato, Perturbation theory for linear operators, Springer-Verlag, New York, 1966 | MR | Zbl | MR | Zbl

[5] O. A. Ladyzhenskaya, “Ob uravneniyakh s malym parametrom pri starshikh proizvodnykh v lineinykh differentsialnykh uravneniyakh s chastnymi proizvodnymi”, Vestn. LGU. Ser. matematika, mekhanika i astronomiya (2), 12:7 (1957), 104–120 | MR | Zbl

[6] J. Simon, “On the existence of the pressure for solution of the variational Navier–Stokes equations”, J. Math. Fluid Mech., 1:3 (1999), 225–234 | DOI | MR | Zbl

[7] N. S. Bakhvalov, “K voprosu o skorosti zvuka v smesyakh”, Dokl. AN SSSR, 245:6 (1979), 1345–1348 | MR

[8] E. Sanches-Palensiya, Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 ; È. Sánchez-Palencia, Non-homogeneous media and vibration theory, Lecture Notes in Phys., 127, Springer-Verlag, Berlin, 1980 | MR | MR | Zbl

[9] G. V. Sandrakov, “O skorosti zvuka v neodnorodnoi periodicheskoi srede”, Metody vychislitelnoi i prikladnoi matematiki, Otdelenie vychisl. matematiki AN SSSR, M., 1985, 122–135 | MR

[10] G. V. Sandrakov, Osrednenie linearizovannoi sistemy gidrodinamiki s maloi vyazkostyu i skorost zvuka v smesyakh, Preprint No 178, Otdelenie vychisl. matematiki AN SSSR, M., 1987 | MR

[11] G. V. Sandrakov, “Osrednenie linearizovannoi sistemy gidrodinamiki i skorost zvuka v smesyakh”, Chislennyi analiz, matematicheskoe modelirovanie i ikh primenenie v mekhanike, Izd-vo Mosk. un-ta, M., 1988, 67–72

[12] G. V. Sandrakov, Chislenno-asimptoticheskoe issledovanie linearizovannoi sistemy gidrodinamiki dlya periodicheskoi sredy, Dis. $\dots$ kand. fiz.-matem. nauk, MGU, M., 1990

[13] N. S. Bakhvalov, M. E. Eglit, “O skorosti rasprostraneniya vozmuschenii v mikroneodnorodnykh uprugikh sredakh s maloi sdvigovoi uprugostyu”, Dokl. RAN, 325:1 (1992), 9–15 ; N. S. Bakhvalov, M. È. Èglit, “Propagation of small perturbations in weakly thermoconducting and weakly viscous micrononhomogeneous media”, Russian Acad. Sci. Dokl. Math., 46:1 (1993), 1–7 | MR | Zbl

[14] N. S. Bakhvalov, M. E. Eglit, “Otsenka pogreshnosti osredneniya dinamiki malykh vozmuschenii silnoneodnorodnykh smesei”, ZhVM i MF, 34:3 (1994), 395–414 | MR | Zbl

[15] N. S. Bakhvalov, G. V. Sandrakov, M. E. Eglit, “Matematicheskoe issledovanie protsessa rasprostraneniya voln v smesyakh”, Vestn. MGU. Ser. 1. Matematika, mekhanika, 1996, no. 6, 19–21 | Zbl

[16] G. V. Sandrakov, “Printsipy osredneniya uravnenii s bystroostsilliruyuschimi koeffitsientami”, Matem. sb., 180:12 (1989), 1634–1679 ; G. V. Sandrakov, “Averaging principles for equations with rapidly oscillating coefficients”, Math. USSR-Sb., 68:2 (1991), 503–553 | MR | Zbl | DOI

[17] G. V. Sandrakov, “Vliyanie vyazkosti na ostsillyatsionnye yavleniya v linearizovannoi gidrodinamike”, Dokl. RAN, 386:5 (2002), 593–596 | MR | Zbl

[18] G. Geymonat, È. Sánchez-Palencia, “On the vanishing viscosity limit for acoustic phenomena in a bounded region”, Arch. Rational Mech. Anal., 75:3 (1980/81), 257–268 | MR | Zbl

[19] F. L. Chernousko, “Dvizhenie tverdogo tela s polostyami, soderzhaschimi vyazkuyu zhidkost”, Matematicheskie metody v dinamike kosmicheskikh apparatov, 7, VTs AN SSSR, M., 1968

[20] G. V. Sandrakov, “Osrednenie parabolicheskikh uravnenii s kontrastnymi koeffitsientami”, Izv. RAN. Ser. matem., 63:5 (1999), 179–224 | MR | Zbl

[21] R. Temam, X. Wang, “On the behavior of the solutions of the Navier–Stokes equations at vanishing viscosity”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25:3–4 (1997), 807–828 | MR | Zbl

[22] A. N. Kozhevnikov, “Ob operatore linearizovannoi statsionarnoi zadachi Nave–Stoksa”, Matem. sb., 125(167):1(9) (1984), 3–18 ; A. N. Kozhevnikov, “On the operator of the linearized steady-state Navier–Stokes problem”, Math. USSR-Sb., 53:1 (1986), 1–16 | MR | Zbl | DOI | MR

[23] M. I. Vishik, L. A. Lyusternik, “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, UMN, 12:5 (1957), 3–122 | MR | Zbl

[24] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1988 ; V. S. Vladimirov, Equations of mathematical physics, Pure Appl. Math., 3, Marcel Dekker, New York, 1971 | MR | Zbl | MR | Zbl

[25] M. Abramovits, I. A. Stigan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 ; M. Abramowitz, I. A. Stigan (eds.), Handbook of mathematical functions with formulas, graphs and mathematical tables, John Wiley Sons, New York, 1972 | MR | Zbl | MR | Zbl

[26] N. E. Kochin, I. A. Kibel, N. V. Roze, Teoreticheskaya gidromekhanika, ch. II, GIFML, M., 1963; N. E. Kochin, I. A. Kibel', N. V. Roze, Theoretical hydromechanics, ed. J. R. M. Radok, Interscience Publishers, New York, 1964 | MR | Zbl

[27] M. E. Bogovskii, “Reshenie pervoi kraevoi zadachi dlya uravneniya nerazryvnosti neszhimaemoi sredy”, Dokl. AN SSSR, 248:5 (1979), 1037–1040 | MR | Zbl

[28] M. E. Bogovskii, “Reshenie nekotorykh zadach vektornogo analiza, svyazannykh s operatorami $\operatorname{div}$ i $\operatorname{grad}$”, Tr. sem. S. L. Soboleva, 1980, no. 1, 5–40 | MR | Zbl

[29] K. O. Friedrichs, “Differential forms on Riemannian manifolds”, Comm. Pure Appl. Math., 8 (1955), 551–590 | DOI | MR | Zbl

[30] G. Allaire, “Homogenization and two-scale convergence”, SIAM J. Math. Anal., 23:6 (1992), 1482–1518 | DOI | MR | Zbl

[31] A. A. Amosov, “O slaboi skhodimosti odnogo klassa bystroostsilliruyuschikh funktsii”, Matem. zametki, 62:1 (1997), 145–150 | MR | Zbl

[32] N. S. Bakhvalov, “Osrednenie uravnenii s chastnymi proizvodnymi s bystroostsilliruyuschimi koeffitsientami”, Sovremennye problemy matematicheskoi fiziki i vychislitelnoi matematiki, Nauka, M., 1982, 38–47 | MR | Zbl

[33] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 ; O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and quasilinear equations of elliptic type, Mathematics in Science and Engineering, 46, Academic Press, New York, 1968 | MR | Zbl | Zbl

[34] G. V. Sandrakov, “Osrednenie nestatsionarnoi sistemy Stoksa s vyazkostyu v perforirovannoi oblasti”, Izv. RAN. Ser. matem., 61:1 (1997), 113–140 | MR | Zbl