Finiteness of the number of arithmetic groups generated by reflections in Lobachevsky spaces
Izvestiya. Mathematics, Tome 71 (2007) no. 1, pp. 53-56 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

After results of the author (1980, 1981) and Vinberg (1981), the finiteness of the number of maximal arithmetic groups generated by reflections in Lobachevsky spaces remained unknown in dimensions $2\le n\le 9$ only. It was proved recently (2005) in dimension 2 by Long, Maclachlan and Reid and in dimension 3 by Agol. Here we use the results in dimensions 2 and 3 to prove the finiteness in all remaining dimensions $4\le n\le 9$. The methods of the author (1980, 1981) are more than sufficient for this using a very short and very simple argument.
@article{IM2_2007_71_1_a3,
     author = {V. V. Nikulin},
     title = {Finiteness of the number of arithmetic groups generated by reflections in {Lobachevsky} spaces},
     journal = {Izvestiya. Mathematics},
     pages = {53--56},
     year = {2007},
     volume = {71},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a3/}
}
TY  - JOUR
AU  - V. V. Nikulin
TI  - Finiteness of the number of arithmetic groups generated by reflections in Lobachevsky spaces
JO  - Izvestiya. Mathematics
PY  - 2007
SP  - 53
EP  - 56
VL  - 71
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a3/
LA  - en
ID  - IM2_2007_71_1_a3
ER  - 
%0 Journal Article
%A V. V. Nikulin
%T Finiteness of the number of arithmetic groups generated by reflections in Lobachevsky spaces
%J Izvestiya. Mathematics
%D 2007
%P 53-56
%V 71
%N 1
%U http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a3/
%G en
%F IM2_2007_71_1_a3
V. V. Nikulin. Finiteness of the number of arithmetic groups generated by reflections in Lobachevsky spaces. Izvestiya. Mathematics, Tome 71 (2007) no. 1, pp. 53-56. http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a3/

[1] I. Agol, “Finiteness of arithmetic Kleinian reflection groups”, Proceedings of the International Congress of Mathematicians, v. 2 (Madrid, 2006), 951–960 | MR | Zbl

[2] E. B. Vinberg, “Diskretnye gruppy, porozhdennye otrazheniyami v prostranstvakh Lobachevskogo”, Matem. sb., 72(114) (1967), 471–488 | MR | Zbl

[3] E. B. Vinberg, “Otsutstvie kristallograficheskikh grupp otrazhenii v prostranstvakh Lobachevskogo bolshoi razmernosti”, Funkts. analiz i ego pril., 15:2 (1981), 67–68 | MR | Zbl

[4] E. B. Vinberg, “Otsutstvie kristallograficheskikh grupp otrazhenii v prostranstvakh Lobachevskogo bolshoi razmernosti”, Tr. MMO, 47 (1984), 68–102 ; È. B. Vinberg, “The absence of crystallographic groups of reflections in Lobachevsky spaces of large dimension”, Trans. Mosc. Math. Soc., 1985 (1985), 75–112 | MR | Zbl | MR

[5] È. B. Vinberg, “Discrete reflection groups in Lobachevsky spaces”, Proceedings of the International Congress of Mathematicians, v. 1 (Warsaw, 1983), PWN, Warsaw, 593–601 | MR | Zbl

[6] H. S. M. Coxeter, “Discrete groups generated by reflections”, Ann. of Math. (2), 35:3 (1934), 588–621 | DOI | MR | Zbl

[7] D. D. Long, C. Maclachlan, A. W. Reid, “Arithmetic Fuchsian groups of genus zero”, Pure Appl. Math. Q., 2:2 (2006), 569–599 | MR | Zbl

[8] V. V. Nikulin, “Ob arifmeticheskikh gruppakh, porozhdennykh otrazheniyami, v prostranstvakh Lobachevskogo”, Izv. AN SSSR. Ser. matem., 44:3 (1980), 637–669 ; V. V. Nikulin, “On arithmetic groups generated by reflections in Lobachevsky spaces”, Math. USSR-Izv., 16:3 (1981), 573–601 | MR | Zbl | DOI | MR | Zbl

[9] V. V. Nikulin, “O klassifikatsii arifmeticheskikh grupp, porozhdennykh otrazheniyami, v prostranstvakh Lobachevskogo”, Izv. AN SSSR. Ser. matem., 45:1 (1981), 113–142 ; V. V. Nikulin, “Classification of arithmetic groups generated by reflections in Lobachevsky spaces”, Math. USSR-Izv., 18:1 (1982), 99–123 | MR | Zbl | DOI | MR

[10] V. V. Nikulin, “Discrete reflection groups in Lobachevsky spaces and algebraic surfaces”, Proceedings of the International Congress of Mathematicians, v. 1 (Berkeley, 1986), 654–671 | MR | Zbl

[11] V. V. Nikulin, Finiteness of the number of arithmetic groups generated by reflections in Lobachevsky spaces, arXiv.org: math.AG/0609256