Finiteness of the number of arithmetic groups generated by reflections in Lobachevsky spaces
Izvestiya. Mathematics , Tome 71 (2007) no. 1, pp. 53-56

Voir la notice de l'article provenant de la source Math-Net.Ru

After results of the author (1980, 1981) and Vinberg (1981), the finiteness of the number of maximal arithmetic groups generated by reflections in Lobachevsky spaces remained unknown in dimensions $2\le n\le 9$ only. It was proved recently (2005) in dimension 2 by Long, Maclachlan and Reid and in dimension 3 by Agol. Here we use the results in dimensions 2 and 3 to prove the finiteness in all remaining dimensions $4\le n\le 9$. The methods of the author (1980, 1981) are more than sufficient for this using a very short and very simple argument.
@article{IM2_2007_71_1_a3,
     author = {V. V. Nikulin},
     title = {Finiteness of the number of arithmetic groups generated by reflections in {Lobachevsky} spaces},
     journal = {Izvestiya. Mathematics },
     pages = {53--56},
     publisher = {mathdoc},
     volume = {71},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a3/}
}
TY  - JOUR
AU  - V. V. Nikulin
TI  - Finiteness of the number of arithmetic groups generated by reflections in Lobachevsky spaces
JO  - Izvestiya. Mathematics 
PY  - 2007
SP  - 53
EP  - 56
VL  - 71
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a3/
LA  - en
ID  - IM2_2007_71_1_a3
ER  - 
%0 Journal Article
%A V. V. Nikulin
%T Finiteness of the number of arithmetic groups generated by reflections in Lobachevsky spaces
%J Izvestiya. Mathematics 
%D 2007
%P 53-56
%V 71
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a3/
%G en
%F IM2_2007_71_1_a3
V. V. Nikulin. Finiteness of the number of arithmetic groups generated by reflections in Lobachevsky spaces. Izvestiya. Mathematics , Tome 71 (2007) no. 1, pp. 53-56. http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a3/