Finiteness of the number of arithmetic groups generated by reflections in Lobachevsky spaces
Izvestiya. Mathematics , Tome 71 (2007) no. 1, pp. 53-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

After results of the author (1980, 1981) and Vinberg (1981), the finiteness of the number of maximal arithmetic groups generated by reflections in Lobachevsky spaces remained unknown in dimensions $2\le n\le 9$ only. It was proved recently (2005) in dimension 2 by Long, Maclachlan and Reid and in dimension 3 by Agol. Here we use the results in dimensions 2 and 3 to prove the finiteness in all remaining dimensions $4\le n\le 9$. The methods of the author (1980, 1981) are more than sufficient for this using a very short and very simple argument.
@article{IM2_2007_71_1_a3,
     author = {V. V. Nikulin},
     title = {Finiteness of the number of arithmetic groups generated by reflections in {Lobachevsky} spaces},
     journal = {Izvestiya. Mathematics },
     pages = {53--56},
     publisher = {mathdoc},
     volume = {71},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a3/}
}
TY  - JOUR
AU  - V. V. Nikulin
TI  - Finiteness of the number of arithmetic groups generated by reflections in Lobachevsky spaces
JO  - Izvestiya. Mathematics 
PY  - 2007
SP  - 53
EP  - 56
VL  - 71
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a3/
LA  - en
ID  - IM2_2007_71_1_a3
ER  - 
%0 Journal Article
%A V. V. Nikulin
%T Finiteness of the number of arithmetic groups generated by reflections in Lobachevsky spaces
%J Izvestiya. Mathematics 
%D 2007
%P 53-56
%V 71
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a3/
%G en
%F IM2_2007_71_1_a3
V. V. Nikulin. Finiteness of the number of arithmetic groups generated by reflections in Lobachevsky spaces. Izvestiya. Mathematics , Tome 71 (2007) no. 1, pp. 53-56. http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a3/

[1] I. Agol, “Finiteness of arithmetic Kleinian reflection groups”, Proceedings of the International Congress of Mathematicians, v. 2 (Madrid, 2006), 951–960 | MR | Zbl

[2] E. B. Vinberg, “Diskretnye gruppy, porozhdennye otrazheniyami v prostranstvakh Lobachevskogo”, Matem. sb., 72(114) (1967), 471–488 | MR | Zbl

[3] E. B. Vinberg, “Otsutstvie kristallograficheskikh grupp otrazhenii v prostranstvakh Lobachevskogo bolshoi razmernosti”, Funkts. analiz i ego pril., 15:2 (1981), 67–68 | MR | Zbl

[4] E. B. Vinberg, “Otsutstvie kristallograficheskikh grupp otrazhenii v prostranstvakh Lobachevskogo bolshoi razmernosti”, Tr. MMO, 47 (1984), 68–102 ; È. B. Vinberg, “The absence of crystallographic groups of reflections in Lobachevsky spaces of large dimension”, Trans. Mosc. Math. Soc., 1985 (1985), 75–112 | MR | Zbl | MR

[5] È. B. Vinberg, “Discrete reflection groups in Lobachevsky spaces”, Proceedings of the International Congress of Mathematicians, v. 1 (Warsaw, 1983), PWN, Warsaw, 593–601 | MR | Zbl

[6] H. S. M. Coxeter, “Discrete groups generated by reflections”, Ann. of Math. (2), 35:3 (1934), 588–621 | DOI | MR | Zbl

[7] D. D. Long, C. Maclachlan, A. W. Reid, “Arithmetic Fuchsian groups of genus zero”, Pure Appl. Math. Q., 2:2 (2006), 569–599 | MR | Zbl

[8] V. V. Nikulin, “Ob arifmeticheskikh gruppakh, porozhdennykh otrazheniyami, v prostranstvakh Lobachevskogo”, Izv. AN SSSR. Ser. matem., 44:3 (1980), 637–669 ; V. V. Nikulin, “On arithmetic groups generated by reflections in Lobachevsky spaces”, Math. USSR-Izv., 16:3 (1981), 573–601 | MR | Zbl | DOI | MR | Zbl

[9] V. V. Nikulin, “O klassifikatsii arifmeticheskikh grupp, porozhdennykh otrazheniyami, v prostranstvakh Lobachevskogo”, Izv. AN SSSR. Ser. matem., 45:1 (1981), 113–142 ; V. V. Nikulin, “Classification of arithmetic groups generated by reflections in Lobachevsky spaces”, Math. USSR-Izv., 18:1 (1982), 99–123 | MR | Zbl | DOI | MR

[10] V. V. Nikulin, “Discrete reflection groups in Lobachevsky spaces and algebraic surfaces”, Proceedings of the International Congress of Mathematicians, v. 1 (Berkeley, 1986), 654–671 | MR | Zbl

[11] V. V. Nikulin, Finiteness of the number of arithmetic groups generated by reflections in Lobachevsky spaces, arXiv.org: math.AG/0609256