Entropy characteristics of subsets of states.~I
Izvestiya. Mathematics , Tome 70 (2006) no. 6, pp. 1265-1292

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the properties of quantum entropy and $\chi$-capacity (regarded as a function of sets of quantum states) in the infinite-dimensional case. We obtain conditions for the boundedness and continuity of the restriction of the entropy to a subset of quantum states, as well as conditions for the existence of the state with maximal entropy in certain subsets. The notion of $\chi$-capacity is considered for an arbitrary subset of states. The existence of an optimal average is proved for an arbitrary subset with finite $\chi$-capacity. We obtain a sufficient condition for the existence of an optimal measure and prove a generalized maximal distance property.
@article{IM2_2006_70_6_a7,
     author = {M. E. Shirokov},
     title = {Entropy characteristics of subsets of {states.~I}},
     journal = {Izvestiya. Mathematics },
     pages = {1265--1292},
     publisher = {mathdoc},
     volume = {70},
     number = {6},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_6_a7/}
}
TY  - JOUR
AU  - M. E. Shirokov
TI  - Entropy characteristics of subsets of states.~I
JO  - Izvestiya. Mathematics 
PY  - 2006
SP  - 1265
EP  - 1292
VL  - 70
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2006_70_6_a7/
LA  - en
ID  - IM2_2006_70_6_a7
ER  - 
%0 Journal Article
%A M. E. Shirokov
%T Entropy characteristics of subsets of states.~I
%J Izvestiya. Mathematics 
%D 2006
%P 1265-1292
%V 70
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2006_70_6_a7/
%G en
%F IM2_2006_70_6_a7
M. E. Shirokov. Entropy characteristics of subsets of states.~I. Izvestiya. Mathematics , Tome 70 (2006) no. 6, pp. 1265-1292. http://geodesic.mathdoc.fr/item/IM2_2006_70_6_a7/