Entropy characteristics of subsets of states.~I
Izvestiya. Mathematics , Tome 70 (2006) no. 6, pp. 1265-1292.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the properties of quantum entropy and $\chi$-capacity (regarded as a function of sets of quantum states) in the infinite-dimensional case. We obtain conditions for the boundedness and continuity of the restriction of the entropy to a subset of quantum states, as well as conditions for the existence of the state with maximal entropy in certain subsets. The notion of $\chi$-capacity is considered for an arbitrary subset of states. The existence of an optimal average is proved for an arbitrary subset with finite $\chi$-capacity. We obtain a sufficient condition for the existence of an optimal measure and prove a generalized maximal distance property.
@article{IM2_2006_70_6_a7,
     author = {M. E. Shirokov},
     title = {Entropy characteristics of subsets of {states.~I}},
     journal = {Izvestiya. Mathematics },
     pages = {1265--1292},
     publisher = {mathdoc},
     volume = {70},
     number = {6},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_6_a7/}
}
TY  - JOUR
AU  - M. E. Shirokov
TI  - Entropy characteristics of subsets of states.~I
JO  - Izvestiya. Mathematics 
PY  - 2006
SP  - 1265
EP  - 1292
VL  - 70
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2006_70_6_a7/
LA  - en
ID  - IM2_2006_70_6_a7
ER  - 
%0 Journal Article
%A M. E. Shirokov
%T Entropy characteristics of subsets of states.~I
%J Izvestiya. Mathematics 
%D 2006
%P 1265-1292
%V 70
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2006_70_6_a7/
%G en
%F IM2_2006_70_6_a7
M. E. Shirokov. Entropy characteristics of subsets of states.~I. Izvestiya. Mathematics , Tome 70 (2006) no. 6, pp. 1265-1292. http://geodesic.mathdoc.fr/item/IM2_2006_70_6_a7/

[1] Bratteli U., Robinson D., Operatornye algebry i kvantovaya statisticheskaya mekhanika, Mir, M., 1982 | MR | Zbl

[2] Dell'Antonio G. F., “On the limits of sequences of normal states”, Commun. Pure Appl. Math., 20 (1967), 413–429 | MR | Zbl

[3] Donald M. J., “Further results on the relative entropy”, Math. Proc. Camb. Philos. Soc., 101:2 (1987), 363–373 | DOI | MR | Zbl

[4] Harremoës P., Topsœ F., “Maximum entropy fundamentals”, Entropy, 3:3 (2001), 191–226 | DOI | MR | Zbl

[5] Harremoës P., “Information Topologies with Applications”, Accepted for publication in a volume of the Bolyai Studies, Springer, N. Y., 2004

[6] Ioffe F. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[7] Kudryavtsev L. D., Kurs matematicheskogo analiza, Vysshaya shkola, M., 1988 | MR | Zbl

[8] Lindblad G., “Expectations and entropy inequalities for finite quantum systems”, Commun. Math. Phys., 39:2 (1974), 111–119 | DOI | MR | Zbl

[9] Lindblad G., “Completely positive maps and entropy inequalities”, Commun. Math. Phys., 40:2 (1975), 147–151 | DOI | MR | Zbl

[10] Ohya M., Petz D., Quantum entropy and its use, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1993 | MR | Zbl

[11] Parthasarathy K. R., Probability measures on metric spaces, Probability and Mathematical Statistics, 3, Academic Press, N. Y.–London, 1967 | MR | Zbl

[12] Sarymsakov T. A., Vvedenie v kvantovuyu teoriyu veroyatnostei, Tashkent, Fan, 1985 | MR

[13] Schumacher B., Westmoreland M. D., “Sending classical information via noisy quantum channels”, Phys. Rev. A, 56:1 (1997), 131–138 | DOI | MR

[14] Schumacher B., Westmoreland M., Optimal signal ensembles, E-print quant-ph/9912122

[15] Shirokov M. E., “The Holevo capacity of infinite dimensional channels and the additivity problem”, Commun. Math. Phys., 262:1 (2006), 137–159 | DOI | MR | Zbl

[16] Shirokov M. E., On entropic quantities related to the classical capacity of infinite dimensional quantum channels, E-print quant-ph/0411091

[17] Kholevo A. S., “Kvantovye teoremy kodirovaniya”, UMN, 53:6 (1998), 193–230 | MR | Zbl

[18] Kholevo A. S., “Klassicheskaya propusknaya sposobnost kvantovykh kanalov s ogranicheniyami na vkhode”, Teoriya veroyatnostei i ee primeneniya, 48:2 (2003), 359–374 | MR | Zbl

[19] Kholevo A. S., Shirokov M. E., “Nepreryvnye ansambli i klassicheskaya propusknaya sposobnost kvantovykh kanalov beskonechnoi razmernosti”, Teoriya veroyatnostei i ee primeneniya, 50:1 (2005), 98–114 | MR | Zbl

[20] Wehrl A., “General properties of entropy”, Rev. Mod. Phys., 50:2 (1978), 221–260 | DOI | MR