Asymptotically homogeneous generalized functions and boundary properties of functions
Izvestiya. Mathematics , Tome 70 (2006) no. 6, pp. 1117-1164.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce and study a spherical representation of generalized functions and use it to give a complete description of asymptotically homogeneous generalized functions in the case when the order is non-critical and sufficient conditions when it is critical. Generalized functions of slow growth (tempered distributions) that have (quasi-)asymptotics at infinity in the asymptotic scale of regularly varying functions are said to be asymptotically homogeneous. In particular, all homogeneous generalized functions are asymptotically homogeneous. We apply our results to the study of singularities of holomorphic functions in tubular domains over cones.
@article{IM2_2006_70_6_a2,
     author = {Yu. N. Drozhzhinov and B. I. Zavialov},
     title = {Asymptotically homogeneous generalized functions and boundary properties of functions},
     journal = {Izvestiya. Mathematics },
     pages = {1117--1164},
     publisher = {mathdoc},
     volume = {70},
     number = {6},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_6_a2/}
}
TY  - JOUR
AU  - Yu. N. Drozhzhinov
AU  - B. I. Zavialov
TI  - Asymptotically homogeneous generalized functions and boundary properties of functions
JO  - Izvestiya. Mathematics 
PY  - 2006
SP  - 1117
EP  - 1164
VL  - 70
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2006_70_6_a2/
LA  - en
ID  - IM2_2006_70_6_a2
ER  - 
%0 Journal Article
%A Yu. N. Drozhzhinov
%A B. I. Zavialov
%T Asymptotically homogeneous generalized functions and boundary properties of functions
%J Izvestiya. Mathematics 
%D 2006
%P 1117-1164
%V 70
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2006_70_6_a2/
%G en
%F IM2_2006_70_6_a2
Yu. N. Drozhzhinov; B. I. Zavialov. Asymptotically homogeneous generalized functions and boundary properties of functions. Izvestiya. Mathematics , Tome 70 (2006) no. 6, pp. 1117-1164. http://geodesic.mathdoc.fr/item/IM2_2006_70_6_a2/

[1] Vladimirov V. S., Drozhzhinov Yu. N., Zavyalov B. I., Mnogomernye tauberovy teoremy dlya obobschennykh funktsii, Nauka, M., 1986 | MR | Zbl

[2] Gelfand I. M., Shilov G. E., Obobschennye funktsii i deistviya nad nimi, vyp. 1, Fizmatgiz, M., 1959 | MR | Zbl

[3] Seneta E., Pravilno menyayuschiesya funktsii, Nauka, M., 1985 | MR | Zbl

[4] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979 | MR | Zbl

[5] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR | Zbl

[6] Vladimirov V. S., Metody teorii funktsii mnogikh kompleksnykh peremennykh, Nauka, M., 1964 | MR | Zbl

[7] Drozhzhinov Yu. N., Zavyalov B. I., “Mnogomernye tauberovy teoremy dlya obobschennykh funktsii so znacheniyami v banakhovykh prostranstvakh”, Matem. sb., 194:11 (2003), 17–64 | MR | Zbl

[8] Drozhzhinov Yu. N., Zavyalov B. I., “Ob odnoi mnogomernoi teoreme tauberova tipa dlya obobschennykh funktsii so znacheniyami v banakhovykh prostranstvakh”, Dokl. RAN, 391:2 (2003), 158–161 | MR

[9] Goldberg A. A., “Integralnoe predstavlenie monotonnykh medlenno menyayuschikhsya funktsii”, Izv. vuzov. Ser. matem., 1988, no. 4, 21–27 | MR | Zbl

[10] Napalkov V. V., Tarov V. A., “Funktsii, ekvivalentnye pravilno menyayuschimsya funktsiyam”, Dokl. RAN, 391:5 (2003), 598–601 | MR | Zbl

[11] Zinoviev Yu. M., “On Lorentz invariant distributions”, Commun. Math. Phys., 47:1 (1976), 33–42 | DOI | MR | Zbl

[12] Zinovev Yu. M., “Formuly obrascheniya preobrazovaniya Laplasa. II. Svetovoi konus”, TMF, 65:2 (1985), 163–175 | MR | Zbl

[13] Drozhzhinov Yu. N., Zavyalov B. I., “Teoremy tipa Khardi–Littlvuda dlya znakoneopredelennykh mer v konuse”, Matem. sb., 186:5 (1995), 49–68 | MR | Zbl