The regularity of central leaves of partially hyperbolic sets
Izvestiya. Mathematics , Tome 70 (2006) no. 6, pp. 1093-1116.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider partially hyperbolic maps which are close to the direct product of a hyperbolic map and an identity map and prove that their central leaves depend Hölder continuously on the base point in the $C^r$-metric. We use this result to construct an open set of diffeomorphisms with rather unusual properties (they have transitive sets with periodic points of different indices and orbits with zero Lyapunov exponent). This paper concludes a series of joint papers with Yu. S. Ilyashenko.
@article{IM2_2006_70_6_a1,
     author = {A. S. Gorodetski},
     title = {The regularity of central leaves of partially hyperbolic sets},
     journal = {Izvestiya. Mathematics },
     pages = {1093--1116},
     publisher = {mathdoc},
     volume = {70},
     number = {6},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_6_a1/}
}
TY  - JOUR
AU  - A. S. Gorodetski
TI  - The regularity of central leaves of partially hyperbolic sets
JO  - Izvestiya. Mathematics 
PY  - 2006
SP  - 1093
EP  - 1116
VL  - 70
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2006_70_6_a1/
LA  - en
ID  - IM2_2006_70_6_a1
ER  - 
%0 Journal Article
%A A. S. Gorodetski
%T The regularity of central leaves of partially hyperbolic sets
%J Izvestiya. Mathematics 
%D 2006
%P 1093-1116
%V 70
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2006_70_6_a1/
%G en
%F IM2_2006_70_6_a1
A. S. Gorodetski. The regularity of central leaves of partially hyperbolic sets. Izvestiya. Mathematics , Tome 70 (2006) no. 6, pp. 1093-1116. http://geodesic.mathdoc.fr/item/IM2_2006_70_6_a1/

[1] Alekseev V. M., Yakobson M., “Symbolic dynamics and hyperbolic dynamic systems”, Phys. Rep., 75:5 (1981), 290–325 | DOI | MR

[2] Anosov D. V., Geodezicheskie potoki na zamknutykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny, Tr. MIAN SSSR, 90, Nauka, M., 1967 | MR | Zbl

[3] Bonatti C., Diaz L. J., “Persistent nonhyperbolic transitive diffeomorphisms”, Ann. of Math., 143:2 (1996), 357–396 | DOI | MR | Zbl

[4] Bonatti C., Viana M., “SRB measures for partially hyperbolic systems whose central direction is mostly contracting”, Israel J. Math., 115 (2000), 157–193 | DOI | MR | Zbl

[5] Bowen R., “Periodic points and measures for axiom A diffeomorphisms”, Trans. Amer. Math. Soc., 154 (1971), 377–397 | DOI | MR | Zbl

[6] Brin M., “Hölder continuity of invariant distributions”, Smooth ergodic theory and its applications, Proc. AMS Summer Research Institute held at the University of Washington (Seattle, WA, July 26–August 13, 1999), 69, eds. A. Katok, R. de la Llave, Ya. Pesin, H. Weiss, Amer. Math. Soc., Providence, RI, 2001 | MR | Zbl

[7] Brin M. I., Pesin Ya. B., “Chastichno giperbolicheskie dinamicheskie sistemy”, Izv. AN SSSR. Ser. matem., 38:1 (1974), 170–212 | MR | Zbl

[8] Dawson S., Grebogi C., Sauer T., Yorke J., “Obstructions to shadowing when a Lyapunov exponent fluctuates about zero”, Phys. Rev. Lett., 73:14 (1994), 1927–1930 | DOI

[9] Gorodetskii A. S., Ilyashenko Yu. S., “Nekotorye novye grubye svoistva invariantnykh mnozhestv i attraktorov dinamicheskikh sistem”, Funktsion. analiz i ego prilozh., 33:2 (1999), 16–30 | MR | Zbl

[10] Gorodetskii A. S., Ilyashenko Yu. S., “Nekotorye svoistva kosykh proizvedenii nad podkovoi i solenoidom”, Tr. MIAN, 231, Nauka, M., 2000, 90–112 | MR | Zbl

[11] Gorodetskii A. S., Ilyashenko Yu. S., Kleptsyn V. A., Nalskii M. B., “Neustranimost nulevykh pokazatelei Lyapunova”, Funktsionalnyi analiz i ego prilozheniya, 39:1 (2005), 27–38 | MR | Zbl

[12] Hasselblatt B., “Regularity of the Anosov splitting and of horospheric foliations”, Ergodic Theory Dynam. Systems, 14:4 (1994), 645–666 | DOI | MR | Zbl

[13] Hirsch M. W, Pugh C. C., Shub M., Invariant manifolds, Lecture Notes in Math., 583, Springer-Verlag, Berlin–Heidelberg–New York, 1977 | MR | Zbl

[14] Ilyashenko Yu., Li W., Nonlocal bifurcations, Mathematical Surveys and Monographs, 66, Amer. Math. Soc., Providence, 1999 | MR | Zbl

[15] Katok A., Hasselblatt B., Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and Its Applications, 54, Cambridge University Press, Cambridge, 1995 | MR | Zbl

[16] Kleptsyn V. A., Nalskii M. B., “Ustoichivost suschestvovaniya negiperbolicheskikh mer dlya $C^1$-diffeomorfizmov”, Funktsion. analiz i ego prilozh., 41:4 (2007), 30–45 | MR | Zbl

[17] Kostelich E. J., Kan Ittai, Grebogi C., Ott E., Yorke J., “Unstable dimension variability: a source of nonhyperbolicity in chaotic systems”, Physica D, 109:1–2 (1997), 81–90 | DOI | MR | Zbl

[18] Niţicǎ V., Török A., “Cohomology of dynamical systems and rigidity of partially hyperbolic actions of higher-rank lattices”, Duke Math. J., 79:3 (1995), 751–810 | DOI | MR | Zbl

[19] Niţicǎ V., Török A., “An open dense set of stably ergodic diffeomorphisms in a neighborhood of a non-ergodic one”, Topology, 40:2 (2001), 259–278 | DOI | MR | Zbl

[20] Pesin Ya. B., Lectures on partial hyperbolicity and stable ergodicity, Zür. Lect. Adv. Math., European Mathematical Society, Zürich, 2004 | MR | Zbl

[21] Pugh C., Shub M., Wilkinson A., “Hölder foliations”, Duke Math. J., 86:3 (1997), 517–546 | DOI | MR | Zbl

[22] Ruelle D., Wilkinson A., “Absolutely singular dynamical foliations”, Comm. Math. Phys., 219:3 (2001), 481–487 | DOI | MR | Zbl

[23] Schmeling J., Siegmund-Schultze Ra., “Hölder continuity of the holonomy maps for hyperbolic basic sets. I”, Ergodic theory and related topics. III, Proc. 3rd Int. Conf. (Güstrow, 1990), Lecture Notes in Math., 1514, 1992, 174–191 | MR | Zbl

[24] Shub M., Global stability of dynamical systems, Springer-Verlag, New York, 1987 | MR | Zbl

[25] Shub M., Wilkinson A., “Pathological foliations and removable zero exponents”, Invent. Math., 139:3 (2000), 495–508 | DOI | MR | Zbl

[26] Yuan G.-Ch., Yorke J. A., “An open set of maps for which every point is absolutely nonshadowable”, Proc. Amer. Math., 128 (2000), 909–918 | DOI | MR | Zbl