Decomposition theorems and kernel theorems for a class
Izvestiya. Mathematics , Tome 70 (2006) no. 5, pp. 1051-1076.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove new theorems about properties of generalized functions defined on Gelfand–Shilov spaces $S^\beta$ with $0\le\beta1$. For each open cone $U\subset \mathbb R^d$ we define a space $S^\beta(U)$ which is related to $S^\beta(\mathbb R^d)$ and consists of entire analytic functions rapidly decreasing inside $U$ and having order of growth $\le 1/(1-\beta)$ outside the cone. Such sheaves of spaces arise naturally in non-local quantum field theory, and this motivates our investigation. We prove that the spaces $S^\beta(U)$ are complete and nuclear and establish a decomposition theorem which implies that every continuous functional defined on $S^\beta(\mathbb R^d)$ has a unique minimal closed carrier cone in $\mathbb R^d$. We also prove kernel theorems for spaces over open and closed cones and elucidate the relation between the carrier cones of multilinear forms and those of the generalized functions determined by these forms.
@article{IM2_2006_70_5_a8,
     author = {M. A. Soloviev},
     title = {Decomposition theorems and kernel theorems for a class},
     journal = {Izvestiya. Mathematics },
     pages = {1051--1076},
     publisher = {mathdoc},
     volume = {70},
     number = {5},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a8/}
}
TY  - JOUR
AU  - M. A. Soloviev
TI  - Decomposition theorems and kernel theorems for a class
JO  - Izvestiya. Mathematics 
PY  - 2006
SP  - 1051
EP  - 1076
VL  - 70
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a8/
LA  - en
ID  - IM2_2006_70_5_a8
ER  - 
%0 Journal Article
%A M. A. Soloviev
%T Decomposition theorems and kernel theorems for a class
%J Izvestiya. Mathematics 
%D 2006
%P 1051-1076
%V 70
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a8/
%G en
%F IM2_2006_70_5_a8
M. A. Soloviev. Decomposition theorems and kernel theorems for a class. Izvestiya. Mathematics , Tome 70 (2006) no. 5, pp. 1051-1076. http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a8/

[1] Gelfand I. M., Shilov G. E., Prostranstva osnovnykh i obobschennykh funktsii, Fizmatgiz, M., 1958 | MR | Zbl

[2] Soloviev M. A., “An extension of distribution theory and of the Paley–Wiener–Schwartz theorem related to quantum gauge theory”, Commun. Math. Phys., 184:3 (1997), 579–596 | DOI | MR | Zbl

[3] Zharinov V. V., “Kompaktnye semeistva LVP i prostranstva FS i DFS”, UMN, 34:4 (1979), 97–131 | MR | Zbl

[4] Solovev M. A., “O dvukh klassakh obobschennykh funktsii, ispolzuemykh v nelokalnoi teorii polya”, TMF, 143:2 (2005), 195–210 | MR

[5] Vladimirov V. S., Metody teorii funktsii mnogikh kompleksnykh peremennykh, Nauka, M., 1964 | MR | Zbl

[6] Khërmander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, t. 1, Mir, M., 1986 | MR | Zbl

[7] Palamodov V. P., “Gomologicheskie metody v teorii lokalno vypuklykh prostranstv”, UMN, 26:1 (1971), 3–65 | MR | Zbl

[8] Khërmander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, t. 2, Mir, M., 1986 | MR | Zbl

[9] Grothendieck A., Produits tensoriels topologiques et espaces nucléaries, Mem. Amer. Math. Soc., 16, 1955, 140 pp. | MR | Zbl

[10] Robertson A., Robertson V., Topologicheskie vektornye prostranstva, Mir, M., 1967 | MR | Zbl

[11] Shefer Kh., Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR | Zbl

[12] Fainberg V. Ya., Soloviev M. A., “Non-localizability and asymptotic commutativity”, TMF, 93:3 (1992), 514–528 | MR | Zbl

[13] Soloviev M. A., Carrier cones of analytic functionals, arXiv: math-ph/0507011

[14] Solovev M. A., “Lorents-kovariantnye ultraraspredeleniya, giperfunktsii i analiticheskie funktsionaly”, TMF, 128:3 (2001), 492–514 | MR | Zbl

[15] Khelemskii A. Ya., Lektsii po funktsionalnomu analizu, MTsNMO, M., 2004

[16] Smirnov A. G., “Towards Euclidean theory of infrared singular quantum fields”, J. Math. Phys., 44:5 (2003), 2058–2076 | DOI | MR | Zbl