Effective finite parametrization in~phase spaces of parabolic
Izvestiya. Mathematics , Tome 70 (2006) no. 5, pp. 1015-1029
Voir la notice de l'article provenant de la source Math-Net.Ru
For evolution equations of parabolic type in a Hilbert phase space $E$,
consideration is given to the problem of the effective parametrization (with a
Lipschitzian estimate) of the sets $\mathcal K\subset E$ by functionals
$\varphi_1,\dots,\varphi_m$ in $E^*$ or, in other words, the problem of the
linear Lipschitzian embedding of $\mathcal K$ in $\mathbb R^m$. If
$\mathcal A$ is the global attractor for the equation, then this kind of
parametrization turns out to be equivalent to the finite dimensionality of the
dynamics on $\mathcal A$. Some tests are established for the parametrization
(in various metrics) of subsets in $E$ and, in particular, of
manifolds $\mathcal M\subset E$ by linear functionals of different classes.
We outline a range of physically significant parabolic problems with a fundamental
domain $\Omega\subset\mathbb R^N$ that admit a parametrization of the
elements $u(x)\in\mathcal A$ by their values $u(x_i)$ at a finite system of
points $x_i\in\Omega$.
@article{IM2_2006_70_5_a6,
author = {A. V. Romanov},
title = {Effective finite parametrization in~phase spaces of parabolic},
journal = {Izvestiya. Mathematics },
pages = {1015--1029},
publisher = {mathdoc},
volume = {70},
number = {5},
year = {2006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a6/}
}
A. V. Romanov. Effective finite parametrization in~phase spaces of parabolic. Izvestiya. Mathematics , Tome 70 (2006) no. 5, pp. 1015-1029. http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a6/