Fractal curves and wavelets
Izvestiya. Mathematics , Tome 70 (2006) no. 5, pp. 975-1013.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notion of a summable fractal curve generated by a finite family of affine operators. This generalizes well-known notions of affine fractals and continuous fractal curves to the case of non-contractive operators. We establish a criterion for the existence of a fractal curve for a given family of operators, obtain criteria for that curve to belong to various function spaces and derive formulae for the exponents of regularity in those spaces as well as asymptotically sharp estimates for the moduli of continuity. These results are applied to the study of well-known curves (Koch, de Rham, and so on), refinable functions and wavelets. We also study the local behaviour of continuous fractal curves. We obtain a formula for the exponent of local regularity of continuous fractal curves at a given point and characterize the sets of points with a fixed local regularity. It is shown that the values of the local regularity of any fractal curve fill out some closed interval. Nevertheless, the regularity is the same at almost all points (in the Lebesgue measure) and can be computed from the Lyapunov exponent of certain linear operators. We apply this technique to refinement equations and compactly supported wavelets. As an example, we compute the moduli of continuity and exponents of local regularity and $L_p$-regularity for several Daubechies wavelets.
@article{IM2_2006_70_5_a5,
     author = {V. Yu. Protasov},
     title = {Fractal curves and wavelets},
     journal = {Izvestiya. Mathematics },
     pages = {975--1013},
     publisher = {mathdoc},
     volume = {70},
     number = {5},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a5/}
}
TY  - JOUR
AU  - V. Yu. Protasov
TI  - Fractal curves and wavelets
JO  - Izvestiya. Mathematics 
PY  - 2006
SP  - 975
EP  - 1013
VL  - 70
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a5/
LA  - en
ID  - IM2_2006_70_5_a5
ER  - 
%0 Journal Article
%A V. Yu. Protasov
%T Fractal curves and wavelets
%J Izvestiya. Mathematics 
%D 2006
%P 975-1013
%V 70
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a5/
%G en
%F IM2_2006_70_5_a5
V. Yu. Protasov. Fractal curves and wavelets. Izvestiya. Mathematics , Tome 70 (2006) no. 5, pp. 975-1013. http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a5/

[1] De Rham G., “Une peu de mathématiques à propos d'une courbe plane”, Rev. de math. élémentaires, 2:4 (1947), 73–76 | MR

[2] De Rham G., “Sur une courbe plane”, J. Math. Pures Appl. (9), 35 (1956), 25–42 | MR | Zbl

[3] De Rham G., “Sur les courbes limités de polygones obtenus par trisection”, Enseign. Math. (2), 5 (1959), 29–43 | MR | Zbl

[4] Barnsley M., Fractals everywhere, Academic Press, Boston, 1988 | MR | Zbl

[5] Micchelli Ch. A., Prautzsch H., “Uniform refinement of curves”, Linear Algebra Appl., 114–115 (1989), 841–870 | DOI | MR | Zbl

[6] Hutchinson J. E., “Fractals and self-similarity”, Indiana Univ. Math. J., 30:5 (1981), 713–747 | DOI | MR | Zbl

[7] Daubechies I., Lagarias J., “Two-scale difference equations. I. Existence and global regularity of solutions”, SIAM. J. Math. Anal., 22:5 (1991), 1388–1410 | DOI | MR | Zbl

[8] Daubechies I., Lagarias J., “Two-scale difference equations. II. Local regularity, infinite products of matrices and fractals”, SIAM. J. Math. Anal., 23:4 (1992), 1031–1079 | DOI | MR | Zbl

[9] Cavaretta A. S., Dahmen W., Micchelli Ch. A., “Stationary subdivision”, Mem. Amer. Math. Soc., 93:453 (1991), 186 | MR | Zbl

[10] Derfel G. A., “Veroyatnostnye metody dlya odnogo klassa funktsionalno-raznostnykh uravnenii”, Ukr. matem. zhurn., 41:10 (1989), 1137–1141 | MR | Zbl

[11] Aumann G., “Subdivision of linear corner cutting curves”, J. Geom. Graph., 1:2 (1997), 91–103 | MR | Zbl

[12] Sidorov N., Vershik A., “Ergodic properties of the Erdős measure, the entropy of the goldenshift, and related problems”, Monatsh. Math., 126:3 (1998), 215–261 | DOI | MR | Zbl

[13] Nikitin P. P., “Khausdorfova razmernost garmonicheskoi mery na krivoi de Rama”, Zap. nauch. semin. POMI, 283, 2001, 206–223 | MR | Zbl

[14] Dyn N., Gregory J. A., Levin D., “Analysis of uniform binary subdivision schemes for curve design”, Constr. Approx., 7:1 (1991), 127–147 | DOI | MR | Zbl

[15] Farin G. E., Curves and surfaces for computer-aided geometric design, 4th ed., Academic Press, San Diego, 1997 | MR | Zbl

[16] Brezinski C., Redivo Zaglia M., Extrapolation methods. Theory and Practice, North-Holland Publ., Amsterdam, 1991 | MR | Zbl

[17] Collela D., Heil C., “Characterization of scaling functions: continuous solutions”, SIAM J. Matrix Anal. Appl., 15:2 (1994), 496–518 | DOI | MR | Zbl

[18] Villemoes L., “Wavelet analysis of refinement equations”, SIAM J. Math. Anal., 25:5 (1994), 1433–1460 | DOI | MR | Zbl

[19] Lau K.-S., Wang J., “Characterization of $L_p$-solutions for two-scale dilation equations”, SIAM. J. Math. Anal., 26:4 (1995), 1018–1046 | DOI | MR | Zbl

[20] Wang Y., “Two-scale dilation equations and the mean spectral radius”, Random Comput. Dynam., 4:1 (1996), 49–72 | MR | Zbl

[21] Rioul O., “Simple regularity criteria for subdivision schemes”, SIAM J. Math. Anal., 23:6 (1992), 1544–1576 | DOI | MR | Zbl

[22] Zhou D.-X., “The $p$-norm joint spectral radius and its applications in wavelet analysis”, International conference in wavelet analysis and its applications (Guangzhou, China, 1999), AMS/IP Stud. Adv. Math., 25, Amer. Math. Soc., Providence, R.I., 2002, 305–326 | MR | Zbl

[23] Rota G.-C., Strang G., “A note on the joint spectral radius”, Indag. Math., 22 (1960), 379–381 | MR | Zbl

[24] Berger M. A., Wang Y., “Bounded semigroups of matrices”, Linear Algebra Appl., 166 (1992), 21–27 | DOI | MR | Zbl

[25] Gripenberg G., “Computing the joint spectral radius”, Linear Algebra Appl., 234 (1996), 43–60 | DOI | MR | Zbl

[26] Protasov V. Yu., “Sovmestnyi spektralnyi radius i invariantnye mnozhestva lineinykh operatorov”, Fundament. i priklad. matematika, 2:1 (1996), 205–231 | MR | Zbl

[27] Protasov V. Yu., “Obobschennyi sovmestnyi spektralnyi radius. Geometricheskii podkhod”, Izv. RAN. Ser. matem., 61:5 (1997), 99–136 | MR | Zbl

[28] Zhou D.-X., “The $p$-norm joint spectral radius for even integers”, Methods Appl. Anal., 5:1 (1998), 39–54 | MR | Zbl

[29] Strang G., “The joint spectral raduus”, Gian-Carlo Rota on analysis and probability. Selected papers and commentaries, Contemporary Mathematics, eds. J. Dhombres, J. P. S. Kung, N. Starr, Birkhäuser, Boston, 2003 | MR | Zbl

[30] Daubechies I., Lagarias J. C., “Corrigendum/addendum to: Sets of matrices all infinite products of which converge”, Linear Algebra Appl., 327:1–3 (2001), 69–83 | DOI | MR | Zbl

[31] Blondel V. D., Gaubert S., Tsitsiklis J. N., “Approximating the spectral radius of sets of matrices in the max-algebra is NP-hard”, IEEE Trans. Automat. Control, 45:9 (2000), 1762–1765 | DOI | MR | Zbl

[32] Blondel V. D., Tsitsiklis J. N., “The boundedness of all products of a pair of matrices is undecidable”, Systems Control Lett., 41:2 (2000), 135–140 | DOI | MR | Zbl

[33] Oseledets V. I., “Multiplikativnaya ergodicheskaya teorema. Kharakteristicheskie pokazateli Lyapunova dinamicheskikh sistem”, Tr. MMO, 19, 1968, 179–210 | MR | Zbl

[34] Chaikin G. M., “An algorithm for high speed curve generation”, Comput. Graphics and Image Processing, 3 (1974), 346–349 | DOI

[35] Mainar E., Pena J. M., “Error analysis of corner cutting algorithms”, Numer. Algorithms, 22:1 (1999), 41–52 | DOI | MR | Zbl

[36] Micchelli Ch. A., Pinkus A., “Descartes systems from corner cutting”, Constr. Approx., 7:1 (1991), 161–194 | DOI | MR | Zbl

[37] Merrien J.-L., “Prescribing the length of a de Rham curve”, Math. Engrg. Indust., 7:2 (1998), 129–138 | MR | Zbl

[38] Dubuc S., Merrien J.-L., Sablonnière P., “The length of the de Rham curve”, J. Math. Anal. Appl., 223:1 (1998), 182–195 | DOI | MR | Zbl

[39] Protasov V. Yu., “O gladkosti krivykh de Rama”, Izv. RAN. Ser. matem., 68:3 (2004), 139–180 | MR | Zbl

[40] Paluszny M., Prautzsch H., Schäfer M., “A geometric look at corner cutting”, Comput. Aided Geom. Design, 14:5 (1997), 421–447 | DOI | MR | Zbl

[41] Gregory J. A., Qu R., “Nonuniform corner cutting”, Comput. Aided Geom. Design, 13:8 (1996), 763–772 | DOI | MR | Zbl

[42] Noakes L., “Nonlinear corner-cutting”, Adv. Comput. Math., 8:3 (1998), 165–177 | DOI | MR | Zbl

[43] Protasov V., “Refinement equations with nonnegative coefficients”, J. Fourier Anal. Appl., 6:1 (2000), 55–78 | DOI | MR | Zbl

[44] Deslauriers G., Dubuc S., “Symmetric iterative interpolation processes”, Constr. Approx., 5:1 (1989), 49–68 | DOI | MR | Zbl

[45] Protasov V. Yu., “Spektralnoe razlozhenie 2-blochnykh tëplitsevykh matrits i masshtabiruyuschie uravneniya”, Algebra i analiz, 18:4 (2006), 127–184 | MR

[46] Dobeshi I., Desyat lektsii po veivletam, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2001 | MR | Zbl

[47] Wojtaszczyk P., A mathematical introduction to wavelets, London Math. Soc. Stud. Texts, 37, Cambridge University Press, Cambridge, 1997 | MR | Zbl