Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2006_70_5_a5, author = {V. Yu. Protasov}, title = {Fractal curves and wavelets}, journal = {Izvestiya. Mathematics }, pages = {975--1013}, publisher = {mathdoc}, volume = {70}, number = {5}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a5/} }
V. Yu. Protasov. Fractal curves and wavelets. Izvestiya. Mathematics , Tome 70 (2006) no. 5, pp. 975-1013. http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a5/
[1] De Rham G., “Une peu de mathématiques à propos d'une courbe plane”, Rev. de math. élémentaires, 2:4 (1947), 73–76 | MR
[2] De Rham G., “Sur une courbe plane”, J. Math. Pures Appl. (9), 35 (1956), 25–42 | MR | Zbl
[3] De Rham G., “Sur les courbes limités de polygones obtenus par trisection”, Enseign. Math. (2), 5 (1959), 29–43 | MR | Zbl
[4] Barnsley M., Fractals everywhere, Academic Press, Boston, 1988 | MR | Zbl
[5] Micchelli Ch. A., Prautzsch H., “Uniform refinement of curves”, Linear Algebra Appl., 114–115 (1989), 841–870 | DOI | MR | Zbl
[6] Hutchinson J. E., “Fractals and self-similarity”, Indiana Univ. Math. J., 30:5 (1981), 713–747 | DOI | MR | Zbl
[7] Daubechies I., Lagarias J., “Two-scale difference equations. I. Existence and global regularity of solutions”, SIAM. J. Math. Anal., 22:5 (1991), 1388–1410 | DOI | MR | Zbl
[8] Daubechies I., Lagarias J., “Two-scale difference equations. II. Local regularity, infinite products of matrices and fractals”, SIAM. J. Math. Anal., 23:4 (1992), 1031–1079 | DOI | MR | Zbl
[9] Cavaretta A. S., Dahmen W., Micchelli Ch. A., “Stationary subdivision”, Mem. Amer. Math. Soc., 93:453 (1991), 186 | MR | Zbl
[10] Derfel G. A., “Veroyatnostnye metody dlya odnogo klassa funktsionalno-raznostnykh uravnenii”, Ukr. matem. zhurn., 41:10 (1989), 1137–1141 | MR | Zbl
[11] Aumann G., “Subdivision of linear corner cutting curves”, J. Geom. Graph., 1:2 (1997), 91–103 | MR | Zbl
[12] Sidorov N., Vershik A., “Ergodic properties of the Erdős measure, the entropy of the goldenshift, and related problems”, Monatsh. Math., 126:3 (1998), 215–261 | DOI | MR | Zbl
[13] Nikitin P. P., “Khausdorfova razmernost garmonicheskoi mery na krivoi de Rama”, Zap. nauch. semin. POMI, 283, 2001, 206–223 | MR | Zbl
[14] Dyn N., Gregory J. A., Levin D., “Analysis of uniform binary subdivision schemes for curve design”, Constr. Approx., 7:1 (1991), 127–147 | DOI | MR | Zbl
[15] Farin G. E., Curves and surfaces for computer-aided geometric design, 4th ed., Academic Press, San Diego, 1997 | MR | Zbl
[16] Brezinski C., Redivo Zaglia M., Extrapolation methods. Theory and Practice, North-Holland Publ., Amsterdam, 1991 | MR | Zbl
[17] Collela D., Heil C., “Characterization of scaling functions: continuous solutions”, SIAM J. Matrix Anal. Appl., 15:2 (1994), 496–518 | DOI | MR | Zbl
[18] Villemoes L., “Wavelet analysis of refinement equations”, SIAM J. Math. Anal., 25:5 (1994), 1433–1460 | DOI | MR | Zbl
[19] Lau K.-S., Wang J., “Characterization of $L_p$-solutions for two-scale dilation equations”, SIAM. J. Math. Anal., 26:4 (1995), 1018–1046 | DOI | MR | Zbl
[20] Wang Y., “Two-scale dilation equations and the mean spectral radius”, Random Comput. Dynam., 4:1 (1996), 49–72 | MR | Zbl
[21] Rioul O., “Simple regularity criteria for subdivision schemes”, SIAM J. Math. Anal., 23:6 (1992), 1544–1576 | DOI | MR | Zbl
[22] Zhou D.-X., “The $p$-norm joint spectral radius and its applications in wavelet analysis”, International conference in wavelet analysis and its applications (Guangzhou, China, 1999), AMS/IP Stud. Adv. Math., 25, Amer. Math. Soc., Providence, R.I., 2002, 305–326 | MR | Zbl
[23] Rota G.-C., Strang G., “A note on the joint spectral radius”, Indag. Math., 22 (1960), 379–381 | MR | Zbl
[24] Berger M. A., Wang Y., “Bounded semigroups of matrices”, Linear Algebra Appl., 166 (1992), 21–27 | DOI | MR | Zbl
[25] Gripenberg G., “Computing the joint spectral radius”, Linear Algebra Appl., 234 (1996), 43–60 | DOI | MR | Zbl
[26] Protasov V. Yu., “Sovmestnyi spektralnyi radius i invariantnye mnozhestva lineinykh operatorov”, Fundament. i priklad. matematika, 2:1 (1996), 205–231 | MR | Zbl
[27] Protasov V. Yu., “Obobschennyi sovmestnyi spektralnyi radius. Geometricheskii podkhod”, Izv. RAN. Ser. matem., 61:5 (1997), 99–136 | MR | Zbl
[28] Zhou D.-X., “The $p$-norm joint spectral radius for even integers”, Methods Appl. Anal., 5:1 (1998), 39–54 | MR | Zbl
[29] Strang G., “The joint spectral raduus”, Gian-Carlo Rota on analysis and probability. Selected papers and commentaries, Contemporary Mathematics, eds. J. Dhombres, J. P. S. Kung, N. Starr, Birkhäuser, Boston, 2003 | MR | Zbl
[30] Daubechies I., Lagarias J. C., “Corrigendum/addendum to: Sets of matrices all infinite products of which converge”, Linear Algebra Appl., 327:1–3 (2001), 69–83 | DOI | MR | Zbl
[31] Blondel V. D., Gaubert S., Tsitsiklis J. N., “Approximating the spectral radius of sets of matrices in the max-algebra is NP-hard”, IEEE Trans. Automat. Control, 45:9 (2000), 1762–1765 | DOI | MR | Zbl
[32] Blondel V. D., Tsitsiklis J. N., “The boundedness of all products of a pair of matrices is undecidable”, Systems Control Lett., 41:2 (2000), 135–140 | DOI | MR | Zbl
[33] Oseledets V. I., “Multiplikativnaya ergodicheskaya teorema. Kharakteristicheskie pokazateli Lyapunova dinamicheskikh sistem”, Tr. MMO, 19, 1968, 179–210 | MR | Zbl
[34] Chaikin G. M., “An algorithm for high speed curve generation”, Comput. Graphics and Image Processing, 3 (1974), 346–349 | DOI
[35] Mainar E., Pena J. M., “Error analysis of corner cutting algorithms”, Numer. Algorithms, 22:1 (1999), 41–52 | DOI | MR | Zbl
[36] Micchelli Ch. A., Pinkus A., “Descartes systems from corner cutting”, Constr. Approx., 7:1 (1991), 161–194 | DOI | MR | Zbl
[37] Merrien J.-L., “Prescribing the length of a de Rham curve”, Math. Engrg. Indust., 7:2 (1998), 129–138 | MR | Zbl
[38] Dubuc S., Merrien J.-L., Sablonnière P., “The length of the de Rham curve”, J. Math. Anal. Appl., 223:1 (1998), 182–195 | DOI | MR | Zbl
[39] Protasov V. Yu., “O gladkosti krivykh de Rama”, Izv. RAN. Ser. matem., 68:3 (2004), 139–180 | MR | Zbl
[40] Paluszny M., Prautzsch H., Schäfer M., “A geometric look at corner cutting”, Comput. Aided Geom. Design, 14:5 (1997), 421–447 | DOI | MR | Zbl
[41] Gregory J. A., Qu R., “Nonuniform corner cutting”, Comput. Aided Geom. Design, 13:8 (1996), 763–772 | DOI | MR | Zbl
[42] Noakes L., “Nonlinear corner-cutting”, Adv. Comput. Math., 8:3 (1998), 165–177 | DOI | MR | Zbl
[43] Protasov V., “Refinement equations with nonnegative coefficients”, J. Fourier Anal. Appl., 6:1 (2000), 55–78 | DOI | MR | Zbl
[44] Deslauriers G., Dubuc S., “Symmetric iterative interpolation processes”, Constr. Approx., 5:1 (1989), 49–68 | DOI | MR | Zbl
[45] Protasov V. Yu., “Spektralnoe razlozhenie 2-blochnykh tëplitsevykh matrits i masshtabiruyuschie uravneniya”, Algebra i analiz, 18:4 (2006), 127–184 | MR
[46] Dobeshi I., Desyat lektsii po veivletam, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2001 | MR | Zbl
[47] Wojtaszczyk P., A mathematical introduction to wavelets, London Math. Soc. Stud. Texts, 37, Cambridge University Press, Cambridge, 1997 | MR | Zbl