A property of the $\ell$-adic logarithms of units of
Izvestiya. Mathematics , Tome 70 (2006) no. 5, pp. 949-974.

Voir la notice de l'article provenant de la source Math-Net.Ru

We continue to examine the finite abelian $\ell$-groups ${\mathcal A}_n^{(p)}$ and ${\mathcal B}_n^{(p)}$, which were introduced in [7] to characterize the bilinear form $U(K_n)\times U(K_n)\to {\mathbb Q}_\ell$, $(x,y)\to {\operatorname{Sp}}_{K_n/{\mathbb Q}_\ell} (\log x\cdot\log y)$, where $K_n$ is an intermediate subfield of the cyclotomic ${\mathbb Z}_\ell$-extension $K_\infty/K$, $K$ is a finite extension of ${\mathbb Q}_\ell$, $U(K_n)$ is the group of units of $K_n$ and $\log$ is the $\ell$-adic logarithm. If $\ell\geqslant 3$ and $K$ is a non-abelian field, we prove that ${\mathcal A}_n^{(p)}\neq 0$ and ${\mathcal B}_n^{(p)}\neq0$ except in the case when $\ell=3$ and the $K$ is a quadratic extension of a cyclotomic field. We also investigate this exceptional case.
@article{IM2_2006_70_5_a4,
     author = {L. V. Kuz'min},
     title = {A property of the $\ell$-adic logarithms of units of},
     journal = {Izvestiya. Mathematics },
     pages = {949--974},
     publisher = {mathdoc},
     volume = {70},
     number = {5},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a4/}
}
TY  - JOUR
AU  - L. V. Kuz'min
TI  - A property of the $\ell$-adic logarithms of units of
JO  - Izvestiya. Mathematics 
PY  - 2006
SP  - 949
EP  - 974
VL  - 70
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a4/
LA  - en
ID  - IM2_2006_70_5_a4
ER  - 
%0 Journal Article
%A L. V. Kuz'min
%T A property of the $\ell$-adic logarithms of units of
%J Izvestiya. Mathematics 
%D 2006
%P 949-974
%V 70
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a4/
%G en
%F IM2_2006_70_5_a4
L. V. Kuz'min. A property of the $\ell$-adic logarithms of units of. Izvestiya. Mathematics , Tome 70 (2006) no. 5, pp. 949-974. http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a4/

[1] Iwasawa K., “On some modules in the theory of cyclotomic fields”, J. Math. Soc. Japan, 16 (1964), 42–82 | MR | Zbl

[2] Kuzmin L. V., “Nekotorye zamechaniya o $\ell$-adicheskom regulyatore. II”, Izv. AN SSSR. Ser. matem., 53:4 (1989), 782–813 | MR | Zbl

[3] Kuzmin L. V., “Analog formuly Rimana–Gurvitsa dlya odnogo tipa $\ell$-rasshirenii polei algebraicheskikh chisel”, Izv. AN. SSSR. Ser. matem., 54:2 (1990), 316–338 | MR | Zbl

[4] Kuzmin L. V., “Novye yavnye formuly dlya simvola normennogo vycheta i ikh prilozheniya”, Izv. AN SSSR. Ser. matem., 54:6 (1990), 1196–1228 | MR | Zbl

[5] Kuzmin L. V., “Novoe dokazatelstvo odnoi teoremy dvoistvennosti o $l$-adicheskikh logarifmakh lokalnykh edinits”, Itogi nauki i tekhniki. Sovr. matematika i ee prilozh., 45, 1997, 72–81 | MR | Zbl

[6] Kuzmin L. V., “Nekotorye zamechaniya o $\ell$-adicheskom regulyatore. III”, Izv. RAN. Ser. matem., 63:6 (1999), 29–82 | MR | Zbl

[7] Kuzmin L. V., “Nekotorye zamechaniya o $\ell$-adicheskom regulyatore. IV”, Izv. RAN. Ser. matem., 64:2 (2000), 43–88 | MR | Zbl

[8] Wintenberger J.-P., “Le corps des normes de certaines extensions infinies de corps locaux; applications”, Ann. Sci. École Norm. Sup. (4), 16:1 (1983), 59–89 | MR | Zbl