Optimal Lyapunov metrics of expansive homeomorphisms
Izvestiya. Mathematics , Tome 70 (2006) no. 5, pp. 883-929.

Voir la notice de l'article provenant de la source Math-Net.Ru

We sharpen the following results of Reddy, Sakai and Fried: any expansive homeomorphism of a metrizable compactum admits a Lyapunov metric compatible with the topology, and if we also assume the existence of a local product structure (that is, if the homeomorphism is an A$^{\#}$-homeomorphism in the terminology of Alekseev and Yakobson, or possesses hyperbolic canonical coordinates in the terminology of Bowen, or together with the metric compactum constitutes a Smale space in the terminology by Ruelle), then we also obtain the validity of Ruelle's technical axiom on the Lipschitz property of the homeomorphism, its inverse, and the local product structure. It is shown that any expansive homeomorphism admits a Lyapunov metric such that the homeomorphism on local stable (resp. unstable) “manifolds” is approximately representable on a small scale as a contraction (resp. expansion) with constant coefficient $\lambda_s$ (resp. $\lambda_u^{-1}$) in this metric. For A$^{\#}$-homeomorphisms, we prove that the desired metric can be approximately represented on a small scale as the direct sum of metrics corresponding to the canonical coordinates determined by the local product structure and that local “manifolds” are “flat” in some sense. It is also proved that the lower bounds for the contraction constants $\lambda_s$ and expansion constants $\lambda_u$ of A$^{\#}$-homeomorphisms are attained simultaneously for some metric that satisfies all the conditions described.
@article{IM2_2006_70_5_a2,
     author = {S. A. Dovbysh},
     title = {Optimal {Lyapunov} metrics of expansive homeomorphisms},
     journal = {Izvestiya. Mathematics },
     pages = {883--929},
     publisher = {mathdoc},
     volume = {70},
     number = {5},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a2/}
}
TY  - JOUR
AU  - S. A. Dovbysh
TI  - Optimal Lyapunov metrics of expansive homeomorphisms
JO  - Izvestiya. Mathematics 
PY  - 2006
SP  - 883
EP  - 929
VL  - 70
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a2/
LA  - en
ID  - IM2_2006_70_5_a2
ER  - 
%0 Journal Article
%A S. A. Dovbysh
%T Optimal Lyapunov metrics of expansive homeomorphisms
%J Izvestiya. Mathematics 
%D 2006
%P 883-929
%V 70
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a2/
%G en
%F IM2_2006_70_5_a2
S. A. Dovbysh. Optimal Lyapunov metrics of expansive homeomorphisms. Izvestiya. Mathematics , Tome 70 (2006) no. 5, pp. 883-929. http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a2/

[1] Alekseev V. M., “Simvolicheskaya dinamika”, Odinnadtsataya matematicheskaya shkola, In-t matem. AN USSR, Kiev, 1976 | MR

[2] Fried D., “Métriques naturelles sur les espaces de Smale”, C. R. Acad. Sci. Paris Sér. I Math., 297:1 (1983), 77–79 | MR | Zbl

[3] Hiraide K., “On homeomorphisms with Markov partitions”, Tokyo J. Math., 8:1 (1985), 219–229 | MR | Zbl

[4] Ombach J., “Equivalent conditions for hyperbolic coordinates”, Topology Appl., 23:1 (1986), 87–90 | DOI | MR | Zbl

[5] Aoki N., “Topological dynamics”, Topics in general topology, North-Holland Math. Library, 41, North-Holland, Amsterdam, 1989, 625–740 | MR | Zbl

[6] Ruelle D., Thermodynamic formalism. The mathematical structures of classical equilibrium statistical mechanics, Encycl. of Math. and its Appl., 5, Addison–Wesley Publishing Co., Massachusetts, 1978 | MR | Zbl

[7] Sakai K., “Shadowing properties of $\mathcal L$-hyperbolic homeomorphisms”, Topology Appl., 112:3 (2001), 229–243 | DOI | MR | Zbl

[8] Bouen R., “Ravnovesnye sostoyaniya i ergodicheskaya teoriya diffeomorfizmov Anosova”, Metody simvolicheskoi dinamiki, Mir, M., 1979, 9–91 | MR | Zbl

[9] Rokafellar R., Vypuklyi analiz, Mir, M., 1973 | Zbl

[10] Dovbysh S. A., “Optimalnye lyapunovskie metriki gomeomorfizmov, obladayuschikh giperbolicheskoi strukturoi”, UMN, 57:4 (2002), 173–174 | MR | Zbl

[11] Hiraide K., “Expansive homeomorphisms with the pseudo-orbit tracing property of $n$-tori”, J. Math. Soc. Japan, 41:3 (1989), 357–389 | DOI | MR

[12] Hirsch M. W., Pugh C. C., Shub M., Invariant Manifolds, Lecture Notes in Math., 583, Springer, Berlin–Heidelberg–New York, 1977 | MR | Zbl