The best asymmetric approximation in spaces of continuous functions
Izvestiya. Mathematics , Tome 70 (2006) no. 4, pp. 809-839.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider approximation by convex sets in the space of continuous maps from a compact topological space to a locally convex space with respect to certain asymmetric seminorms. We suggest new criteria for elements of least deviation, make a definition of strongly unique elements of least deviation and study the problems of characterization and existence of such elements. The most detailed study concerns the approximation with a sign-sensitive weight of real-valued continuous functions defined on a compact metric space or on a line segment by elements of the Chebyshev space.
@article{IM2_2006_70_4_a6,
     author = {A. V. Pokrovskii},
     title = {The best asymmetric approximation in spaces of continuous functions},
     journal = {Izvestiya. Mathematics },
     pages = {809--839},
     publisher = {mathdoc},
     volume = {70},
     number = {4},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_4_a6/}
}
TY  - JOUR
AU  - A. V. Pokrovskii
TI  - The best asymmetric approximation in spaces of continuous functions
JO  - Izvestiya. Mathematics 
PY  - 2006
SP  - 809
EP  - 839
VL  - 70
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2006_70_4_a6/
LA  - en
ID  - IM2_2006_70_4_a6
ER  - 
%0 Journal Article
%A A. V. Pokrovskii
%T The best asymmetric approximation in spaces of continuous functions
%J Izvestiya. Mathematics 
%D 2006
%P 809-839
%V 70
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2006_70_4_a6/
%G en
%F IM2_2006_70_4_a6
A. V. Pokrovskii. The best asymmetric approximation in spaces of continuous functions. Izvestiya. Mathematics , Tome 70 (2006) no. 4, pp. 809-839. http://geodesic.mathdoc.fr/item/IM2_2006_70_4_a6/

[1] Chebotarëv N. G., “Ob odnom obschem kriterii minimaksa”, Dokl. AN SSSR, 39:1 (1943), 373–376

[2] Chebotarëv N. G., “Kriterii minimaksa i ego prilozheniya”, Sobranie sochinenii, 2, Izd-vo AN SSSR, M.–L., 1949, 396–409

[3] Demyanov V. F., Malozemov V. N., Vvedenie v minimaks, Nauka, M., 1972 | MR | Zbl

[4] Newman D. S., Shapiro H. S., “Some theorems on Čebyšev approximation”, Duke Math. J., 30:4 (1963), 673–681 | DOI | MR | Zbl

[5] Mairhuber J. S., “On Haar's theorem concerning Chebyshev approximation problems having unique solution”, Proc. Amer. Math. Soc., 7:4 (1956), 609–615 | DOI | MR | Zbl

[6] Haar A., “Die Minkowskische Geometrie und die Annäherung an stetige Funktionen”, Math. Ann., 78 (1917), 294–311 | DOI | MR | Zbl

[7] Berdyshev V. I., Petrak L. V., Approksimatsiya funktsii, szhatie chislennoi informatsii, prilozheniya, Izd-vo UrO RAN, Ekaterinburg, 1999

[8] Kollatts L., Krabs V., Teoriya priblizhenii: chebyshevskie priblizheniya i ikh prilozheniya, Nauka, M., 1978 | MR

[9] Lorentz G. G., Golitschek M. von, Makovoz Y., Constractive approximation: advanced problems, Grundlehren der Mathematischen Wissenschaften, 304, Springer-Verlag, Berlin, 1996 | MR | Zbl

[10] Nürnberger G., Approximation by spline functions, Springer-Verlag, Berlin, 1989 | MR | Zbl

[11] Marinov A. V., Ravnomernye konstanty silnoi edinstvennosti pri approksimatsii konechnomernym chebyshevskim podprostranstvom, Tez. dokl. Mezhdunar. konf. “Teoriya priblizhenii i garmonicheskii analiz” (Rossiya, Tula, 26–29 maya 1998 g.), Tula, 1998, 169–170

[12] Remez E. Ya., Osnovy chislennykh metodov chebyshevskogo priblizheniya, Naukova dumka, Kiev, 1969 | MR | Zbl

[13] Chumak A. A., “O silnoi edinstvennosti elementa naimenshego ukloneniya dlya approksimatsii so znakochuvstvitelnym vesom”, Zbirnik prats Institutu matematiki NAN Ukraïni, 1:3 (2004), 318–327

[14] Kolmogorov A. N., “Zamechanie po povodu mnogochlenov P. L. Chebysheva, naimenee uklonyayuschikhsya ot zadannoi funktsii”, UMN, 3:1 (1948), 216–221 | MR | Zbl

[15] Dzyadyk V. K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR | Zbl

[16] Sevastyanov E. A., “O probleme Khaara dlya znakochuvstvitelnykh approksimatsii”, Matem. sb., 188:2 (1997), 95–128 | MR | Zbl

[17] Minkowski H., “Theorie der konvexen Körper, insbesondere Begrundung ihres Oberflachenbegriffs”, Ces. Abh., 2 (1911), 131–229

[18] Krein M. G., Nudelman A. A., Problema momentov Markova i ekstremalnye zadachi, Nauka, M., 1973 | MR | Zbl

[19] Dolzhenko E. P., Sevastyanov E. A., “Approksimatsii so znakochuvstvitelnym vesom (teoremy suschestvovaniya i edinstvennosti)”, Izv. RAN. Ser. matem., 62:6 (1998), 59–102 | MR | Zbl

[20] Dolzhenko E. P., Sevastyanov E. A., “Approksimatsii so znakochuvstvitelnym vesom (ustoichivost, prilozheniya k teorii uzhei i khausdorfovym approksimatsiyam)”, Izv. RAN. Ser. matem., 63:3 (1999), 77–118 | MR | Zbl

[21] Dolzhenko E. P., Sevastyanov E. A., “Znakochuvstvitelnye approksimatsii (prostranstvo znakochuvstvitelnykh vesov, zhestkost i svoboda sistemy)”, Dokl. RAN, 332:6 (1993), 686–689 | MR | Zbl

[22] Dolzhenko E. P., Sevastyanov E. A., “Znakochuvstvitelnye approksimatsii (voprosy edinstvennosti i ustoichivosti)”, Dokl. RAN, 333:1 (1993), 5–7 | MR | Zbl

[23] Tikhomirov V. M., “Garmoniki i splainy kak optimalnye sredstva priblizheniya i vosstanovleniya”, UMN, 50:2 (1995), 125–174 | MR | Zbl

[24] Magaril-Ilyaev G. G., Tikhomirov V. M., Vypuklyi analiz i ego prilozheniya, Editorial URSS, M., 2000

[25] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1989 | MR | Zbl

[26] Zukhovitskii S. I., Stechkin S. B., “O priblizhenii abstraktnykh funktsii”, UMN, 12:1 (1957), 187–191 | MR | Zbl

[27] Papini P. L., “Approximations and norm derivatives in real normed spaces”, Resultate Math., 5 (1982), 81–94 | MR | Zbl

[28] Yang Wenshan, Li Chong, Watson G. A., “Characterization and uniqueness of nonlinear uniform approximation”, Proc. Edinburg Math. Soc. Ser. II, 40:3 (1997), 473–482 | DOI | MR | Zbl

[29] Wulbert D. E., “Uniqueness and differential characterization of approximations from manifolds of functions”, Amer. J. Math., 18 (1971), 350–366 | DOI | MR | Zbl

[30] Fedorchuk V. V., Filippov V. V., Obschaya topologiya. Osnovnye konstruktsii, Izd-vo MGU, M., 1988 | Zbl