The best asymmetric approximation in spaces of continuous functions
Izvestiya. Mathematics , Tome 70 (2006) no. 4, pp. 809-839

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider approximation by convex sets in the space of continuous maps from a compact topological space to a locally convex space with respect to certain asymmetric seminorms. We suggest new criteria for elements of least deviation, make a definition of strongly unique elements of least deviation and study the problems of characterization and existence of such elements. The most detailed study concerns the approximation with a sign-sensitive weight of real-valued continuous functions defined on a compact metric space or on a line segment by elements of the Chebyshev space.
@article{IM2_2006_70_4_a6,
     author = {A. V. Pokrovskii},
     title = {The best asymmetric approximation in spaces of continuous functions},
     journal = {Izvestiya. Mathematics },
     pages = {809--839},
     publisher = {mathdoc},
     volume = {70},
     number = {4},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_4_a6/}
}
TY  - JOUR
AU  - A. V. Pokrovskii
TI  - The best asymmetric approximation in spaces of continuous functions
JO  - Izvestiya. Mathematics 
PY  - 2006
SP  - 809
EP  - 839
VL  - 70
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2006_70_4_a6/
LA  - en
ID  - IM2_2006_70_4_a6
ER  - 
%0 Journal Article
%A A. V. Pokrovskii
%T The best asymmetric approximation in spaces of continuous functions
%J Izvestiya. Mathematics 
%D 2006
%P 809-839
%V 70
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2006_70_4_a6/
%G en
%F IM2_2006_70_4_a6
A. V. Pokrovskii. The best asymmetric approximation in spaces of continuous functions. Izvestiya. Mathematics , Tome 70 (2006) no. 4, pp. 809-839. http://geodesic.mathdoc.fr/item/IM2_2006_70_4_a6/