On some properties of stable and unstable surfaces with prescribed mean curvature
Izvestiya. Mathematics , Tome 70 (2006) no. 4, pp. 717-730.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the properties of stable (and unstable) hypersurfaces with prescribed mean curvature in Euclidean space and establish some necessary and sufficient tests for stability stated in terms of the external geometric structure of the surface. We prove an analogue of a well-known theorem of A. D. Aleksandrov that generalizes the variational property of the sphere and find an exact estimate for the extent of a stable tubular surface of constant mean curvature. Our method is based on an analysis of the first and second variations of area-type functionals for the surfaces under consideration.
@article{IM2_2006_70_4_a3,
     author = {V. A. Klyachin},
     title = {On some properties of stable and unstable surfaces with prescribed mean curvature},
     journal = {Izvestiya. Mathematics },
     pages = {717--730},
     publisher = {mathdoc},
     volume = {70},
     number = {4},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_4_a3/}
}
TY  - JOUR
AU  - V. A. Klyachin
TI  - On some properties of stable and unstable surfaces with prescribed mean curvature
JO  - Izvestiya. Mathematics 
PY  - 2006
SP  - 717
EP  - 730
VL  - 70
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2006_70_4_a3/
LA  - en
ID  - IM2_2006_70_4_a3
ER  - 
%0 Journal Article
%A V. A. Klyachin
%T On some properties of stable and unstable surfaces with prescribed mean curvature
%J Izvestiya. Mathematics 
%D 2006
%P 717-730
%V 70
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2006_70_4_a3/
%G en
%F IM2_2006_70_4_a3
V. A. Klyachin. On some properties of stable and unstable surfaces with prescribed mean curvature. Izvestiya. Mathematics , Tome 70 (2006) no. 4, pp. 717-730. http://geodesic.mathdoc.fr/item/IM2_2006_70_4_a3/

[1] Barbosa J. L., do Carmo M., “On the size of a stable minimal surface in $\mathbb R^3$”, Amer. J. Math., 98:2 (1976), 515–528 | DOI | MR | Zbl

[2] Barbosa J. L., do Carmo M., “Stability of minimal surfaces and eigevalues of the Laplacian”, Math. Z., 173:1 (1980), 13–28 | DOI | MR | Zbl

[3] do Carmo M., Peng C. K., “The stable minimal surfaces in ${\mathbb R}^3$ are planes”, Bull. Amer. Math. Soc. (N. S.), 1:6 (1979), 903–906 | DOI | MR | Zbl

[4] Lawson H. B., “Some intrinsic characterizations of minimal surfaces”, J. Analyse Math., 24 (1971), 151–161 | DOI | MR | Zbl

[5] Fomenko A. T., “O skorosti rosta i naimenshikh ob'emakh globalno minimalnykh poverkhnostei v kobordizmakh”, Tr. seminara po vekt. i tenz. analizu, 21, MGU, M., 1985, 3–12 | MR

[6] Tuzhilin A. A., Fomenko A. T., Elementy geometrii i topologii minimalnykh poverkhnostei, Nauka, M., 1991 | MR | Zbl

[7] Tuzhilin A. A., “Indeksy tipa Morsa dvumernykh minimalnykh poverkhnostei v $\mathbb R^3$ i $H^3$”, Izv. AN SSSR. Ser. matem., 55:3 (1991), 581–607 | MR | Zbl

[8] Pogorelov A. V., “Ob ustoichivosti minimalnykh poverkhnostei”, Dokl. AN SSSR, 260:2 (1981), 293–295 | MR | Zbl

[9] Hoffman D., Osserman R., “The area of generalized Gaussian image and the stability of minimal surfaces in $S^n$ and $\mathbb R^n$”, Math. Ann., 260:4 (1982), 437–452 | DOI | MR | Zbl

[10] Klyachin V. A., Miklyukov V. M., “Ob odnom emkostnom priznake neustoichivosti minimalnykh giperpoverkhnostei”, Dokl. RAN, 330:4 (1993), 424–426 | MR | Zbl

[11] Finn R., Vogel T. I., “On the volume infimum for liquid bridges”, Z. Anal. Anwend., 11:1 (1992), 3–23 | MR | Zbl

[12] Langbein D., “Stability of liquid bridges between parallel plates”, Microgravity Sci. Techn., 5 (1992), 2–11

[13] Concus P., Finn R., McCuan J., “Liquid bridges, edges blobs, and Scherk-type capillary surfaces”, Indiana Univ. Math. J., 50:1 (2001), 411–440 | DOI | MR | Zbl

[14] Vogel T. I., “Types of instability for the trapped drop problem with equal contact angles”, Geometric Analysis and Computer Graphics, Math. Sci. Res. Inst. Publ., 17, eds. P. Concus, R. Finn, D. Hoffman, Springer-Verlag, New York, 1991, 195–203 | MR

[15] Finn R., Ravnovesnye kapillyarnye poverkhnosti. Matematicheskaya teoriya, Mir, M., 1989 | MR

[16] Wente H. C., “The stability of the axially symmetric pendant drop”, Pacific J. Math., 88:2 (1980), 421–470 | MR | Zbl

[17] Klyachin V. A., “Ob ustoichivosti i neustoichivosti poverkhnostei predpisannoi srednei krivizny”, Dokl. RAN, 403:6 (2005), 739–741 | MR | Zbl

[18] Aleksandrov A. D., “Teoremy edinstvennosti dlya poverkhnostei v tselom. V”, Vestn. LGU, 13:19 (1958), 5–8 | MR

[19] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, v 2-x t. T. 1, 2, Nauka, M., 1981 | MR | MR | Zbl

[20] Saranin V. A., Ravnovesie zhidkostei i ego ustoichivost, In-t kompyuternykh issledovanii, M., 2002

[21] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987 | MR | Zbl

[22] Simons J., “Minimal varieties in riemannian manifolds”, Ann. of Math. (2), 88 (1968), 62–105 | DOI | MR | Zbl