Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2006_70_4_a3, author = {V. A. Klyachin}, title = {On some properties of stable and unstable surfaces with prescribed mean curvature}, journal = {Izvestiya. Mathematics }, pages = {717--730}, publisher = {mathdoc}, volume = {70}, number = {4}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_4_a3/} }
V. A. Klyachin. On some properties of stable and unstable surfaces with prescribed mean curvature. Izvestiya. Mathematics , Tome 70 (2006) no. 4, pp. 717-730. http://geodesic.mathdoc.fr/item/IM2_2006_70_4_a3/
[1] Barbosa J. L., do Carmo M., “On the size of a stable minimal surface in $\mathbb R^3$”, Amer. J. Math., 98:2 (1976), 515–528 | DOI | MR | Zbl
[2] Barbosa J. L., do Carmo M., “Stability of minimal surfaces and eigevalues of the Laplacian”, Math. Z., 173:1 (1980), 13–28 | DOI | MR | Zbl
[3] do Carmo M., Peng C. K., “The stable minimal surfaces in ${\mathbb R}^3$ are planes”, Bull. Amer. Math. Soc. (N. S.), 1:6 (1979), 903–906 | DOI | MR | Zbl
[4] Lawson H. B., “Some intrinsic characterizations of minimal surfaces”, J. Analyse Math., 24 (1971), 151–161 | DOI | MR | Zbl
[5] Fomenko A. T., “O skorosti rosta i naimenshikh ob'emakh globalno minimalnykh poverkhnostei v kobordizmakh”, Tr. seminara po vekt. i tenz. analizu, 21, MGU, M., 1985, 3–12 | MR
[6] Tuzhilin A. A., Fomenko A. T., Elementy geometrii i topologii minimalnykh poverkhnostei, Nauka, M., 1991 | MR | Zbl
[7] Tuzhilin A. A., “Indeksy tipa Morsa dvumernykh minimalnykh poverkhnostei v $\mathbb R^3$ i $H^3$”, Izv. AN SSSR. Ser. matem., 55:3 (1991), 581–607 | MR | Zbl
[8] Pogorelov A. V., “Ob ustoichivosti minimalnykh poverkhnostei”, Dokl. AN SSSR, 260:2 (1981), 293–295 | MR | Zbl
[9] Hoffman D., Osserman R., “The area of generalized Gaussian image and the stability of minimal surfaces in $S^n$ and $\mathbb R^n$”, Math. Ann., 260:4 (1982), 437–452 | DOI | MR | Zbl
[10] Klyachin V. A., Miklyukov V. M., “Ob odnom emkostnom priznake neustoichivosti minimalnykh giperpoverkhnostei”, Dokl. RAN, 330:4 (1993), 424–426 | MR | Zbl
[11] Finn R., Vogel T. I., “On the volume infimum for liquid bridges”, Z. Anal. Anwend., 11:1 (1992), 3–23 | MR | Zbl
[12] Langbein D., “Stability of liquid bridges between parallel plates”, Microgravity Sci. Techn., 5 (1992), 2–11
[13] Concus P., Finn R., McCuan J., “Liquid bridges, edges blobs, and Scherk-type capillary surfaces”, Indiana Univ. Math. J., 50:1 (2001), 411–440 | DOI | MR | Zbl
[14] Vogel T. I., “Types of instability for the trapped drop problem with equal contact angles”, Geometric Analysis and Computer Graphics, Math. Sci. Res. Inst. Publ., 17, eds. P. Concus, R. Finn, D. Hoffman, Springer-Verlag, New York, 1991, 195–203 | MR
[15] Finn R., Ravnovesnye kapillyarnye poverkhnosti. Matematicheskaya teoriya, Mir, M., 1989 | MR
[16] Wente H. C., “The stability of the axially symmetric pendant drop”, Pacific J. Math., 88:2 (1980), 421–470 | MR | Zbl
[17] Klyachin V. A., “Ob ustoichivosti i neustoichivosti poverkhnostei predpisannoi srednei krivizny”, Dokl. RAN, 403:6 (2005), 739–741 | MR | Zbl
[18] Aleksandrov A. D., “Teoremy edinstvennosti dlya poverkhnostei v tselom. V”, Vestn. LGU, 13:19 (1958), 5–8 | MR
[19] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, v 2-x t. T. 1, 2, Nauka, M., 1981 | MR | MR | Zbl
[20] Saranin V. A., Ravnovesie zhidkostei i ego ustoichivost, In-t kompyuternykh issledovanii, M., 2002
[21] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987 | MR | Zbl
[22] Simons J., “Minimal varieties in riemannian manifolds”, Ann. of Math. (2), 88 (1968), 62–105 | DOI | MR | Zbl