Mutually singular functions and computation of the lengths of curves
Izvestiya. Mathematics , Tome 70 (2006) no. 4, pp. 693-716

Voir la notice de l'article provenant de la source Math-Net.Ru

We study rectifiable curves given by mutually singular coordinate functions in finite-dimensional normed spaces. We describe these curves in terms of the behaviour of approximative tangents and find a simple formula for their lengths. We deduce from these results new necessary and sufficient conditions for the mutual singularity of finitely many functions of bounded variation.
@article{IM2_2006_70_4_a2,
     author = {A. A. Dovgoshey and O. Martio},
     title = {Mutually singular functions and computation of the lengths of curves},
     journal = {Izvestiya. Mathematics },
     pages = {693--716},
     publisher = {mathdoc},
     volume = {70},
     number = {4},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_4_a2/}
}
TY  - JOUR
AU  - A. A. Dovgoshey
AU  - O. Martio
TI  - Mutually singular functions and computation of the lengths of curves
JO  - Izvestiya. Mathematics 
PY  - 2006
SP  - 693
EP  - 716
VL  - 70
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2006_70_4_a2/
LA  - en
ID  - IM2_2006_70_4_a2
ER  - 
%0 Journal Article
%A A. A. Dovgoshey
%A O. Martio
%T Mutually singular functions and computation of the lengths of curves
%J Izvestiya. Mathematics 
%D 2006
%P 693-716
%V 70
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2006_70_4_a2/
%G en
%F IM2_2006_70_4_a2
A. A. Dovgoshey; O. Martio. Mutually singular functions and computation of the lengths of curves. Izvestiya. Mathematics , Tome 70 (2006) no. 4, pp. 693-716. http://geodesic.mathdoc.fr/item/IM2_2006_70_4_a2/