$L^p$-Fourier multipliers with bounded powers
Izvestiya. Mathematics , Tome 70 (2006) no. 3, pp. 549-585

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the space $M_p(\mathbb R^d)$ of $L^p$-Fourier multipliers and give a detailed proof of the following result announced by the authors in $\lbrack10\rbrack$: if $\varphi\colon\mathbb R^d\to \lbrack0, 2\pi\lbrack$ is a measurable function and $\|e^{in\varphi}\|_{M_p}=O(1)$, $n\in\mathbb Z$, for some $p\ne 2$, then the function $\varphi$ is linear in domains complementary to some closed set $E(\varphi)$ of Lebesgue measure zero, and the set of values of the gradient of $\varphi$ is finite. We also consider the question of which sets can appear as $E(\varphi)$. We study the behaviour of the norms of the exponential functions $e^{i\lambda\varphi}$ in the case when the frequency $\lambda$ tends to infinity along a sequence of real numbers. In particular, we construct a homeomorphism $\varphi$ of the line $\mathbb R$ which is non-linear on every interval and satisfies $\|e^{i2^n\varphi}\|_{M_p(\mathbb R)}=O(1)$, $n=0, 1, 2,\dots$, for all $p$, $1$.
@article{IM2_2006_70_3_a2,
     author = {V. V. Lebedev and A. M. Olevskii},
     title = {$L^p${-Fourier} multipliers with bounded powers},
     journal = {Izvestiya. Mathematics },
     pages = {549--585},
     publisher = {mathdoc},
     volume = {70},
     number = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_3_a2/}
}
TY  - JOUR
AU  - V. V. Lebedev
AU  - A. M. Olevskii
TI  - $L^p$-Fourier multipliers with bounded powers
JO  - Izvestiya. Mathematics 
PY  - 2006
SP  - 549
EP  - 585
VL  - 70
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2006_70_3_a2/
LA  - en
ID  - IM2_2006_70_3_a2
ER  - 
%0 Journal Article
%A V. V. Lebedev
%A A. M. Olevskii
%T $L^p$-Fourier multipliers with bounded powers
%J Izvestiya. Mathematics 
%D 2006
%P 549-585
%V 70
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2006_70_3_a2/
%G en
%F IM2_2006_70_3_a2
V. V. Lebedev; A. M. Olevskii. $L^p$-Fourier multipliers with bounded powers. Izvestiya. Mathematics , Tome 70 (2006) no. 3, pp. 549-585. http://geodesic.mathdoc.fr/item/IM2_2006_70_3_a2/