Hyperplane sections and derived categories
Izvestiya. Mathematics , Tome 70 (2006) no. 3, pp. 447-547.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a generalization of the theorem of Bondal and Orlov about the derived categories of coherent sheaves on intersections of quadrics, revealing the relation of this theorem to projective duality. As an application, we describe the derived categories of coherent sheaves on Fano 3-folds of index 1 and degrees 12, 16 and 18.
@article{IM2_2006_70_3_a1,
     author = {A. G. Kuznetsov},
     title = {Hyperplane sections and derived categories},
     journal = {Izvestiya. Mathematics },
     pages = {447--547},
     publisher = {mathdoc},
     volume = {70},
     number = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_3_a1/}
}
TY  - JOUR
AU  - A. G. Kuznetsov
TI  - Hyperplane sections and derived categories
JO  - Izvestiya. Mathematics 
PY  - 2006
SP  - 447
EP  - 547
VL  - 70
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2006_70_3_a1/
LA  - en
ID  - IM2_2006_70_3_a1
ER  - 
%0 Journal Article
%A A. G. Kuznetsov
%T Hyperplane sections and derived categories
%J Izvestiya. Mathematics 
%D 2006
%P 447-547
%V 70
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2006_70_3_a1/
%G en
%F IM2_2006_70_3_a1
A. G. Kuznetsov. Hyperplane sections and derived categories. Izvestiya. Mathematics , Tome 70 (2006) no. 3, pp. 447-547. http://geodesic.mathdoc.fr/item/IM2_2006_70_3_a1/

[1] Berthelot P., Grothendieck A., Illusie L., Theorie des reductions et theoreme de Riemann-Roch, Lect. Not. Math., 225, Springer-Verlag, Heidelberg, 1971 | MR | Zbl

[2] Bondal A. I., “Predstavleniya assotsiativnykh algebr i kogerentnye puchki”, Izv. AN SSSR. Ser. matem., 53:1 (1989), 25–44 | MR

[3] Bondal A. I., Kapranov M. M., “Predstavimye funktory, funktory Serra i perestroiki”, Izv. AN SSSR. Ser. matem., 53:6 (1989), 1183–1205 | MR

[4] Bondal A., Orlov D., Semiorthogonal decomposition for algebraic varieties, math.AG/9506012

[5] Bondal A., Orlov D., “Derived categories of coherent sheaves”, Proceedings of the International Congress of Mathematicians, V. II (Beijing, 2002), Higher Ed. Press, Beijing, 2002, 47–56 | MR | Zbl

[6] Bondal A., Orlov D., “Reconstruction of a variety from the derived category and groups of autoequivalences”, Compositio Math., 125:3 (2001), 327–344 | DOI | MR | Zbl

[7] Bridgeland T., “Equivalences of triangulated categories and Fourier-Mukai transforms”, Bull. London Math. Soc., 31:1 (1999), 25–34 | DOI | MR | Zbl

[8] Bridgeland T., King A., Ried M., “The McKay correspondence as an equivalence of derived categories”, J. Amer. Math. Soc., 14:3 (2001), 535–554 | DOI | MR | Zbl

[9] Chevalley C., The algebraic theory of spinors, Columbia University Press, N. Y., 1954 | MR | Zbl

[10] Desale U., Ramanan S., “Classification of vector bundles of rank 2 on hyperelliptic curves”, Invent. Math., 38:2 (1976), 161–185 | DOI | MR | Zbl

[11] Gonzalez-Sprinberg G., Verdier J.-L., “Construction géométrique de la correspondance de McKay”, Ann. Sci. Éc. Norm. Sup., Ser. 4, 16:3 (1983), 409–449 | MR | Zbl

[12] Hartshorn R., “Residues and duality”, Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64, With an appendix by P. Deligne, Lect. Not. Math., 20, Springer-Verlag, Berlin–N. Y., 1966 | MR | Zbl

[13] Holweck F., Lieu singulier des variétés duales: approche géométrique et applications aux variétés homogènes, Ph. D., Universite Paul Sabatier, Toulouse, 2004

[14] Humphreys J., Conjugacy classes in semisimple algebraic groups, Mathematical Surveys and Monographs, 43, AMS, Providence, 1995 | MR | Zbl

[15] Kapranov M., Vasserot E., “Kleinian singularities, derived categories and Hall algebras”, Math. Ann., 316:3 (2000), 565–576 | DOI | MR | Zbl

[16] King A., “Moduli of representations of finite-dimensional algebras”, Quart. J. Math. Oxford. Ser. (2), 45:180 (1994), 515–530 | DOI | MR | Zbl

[17] Kuznetsov A. G., “Proizvodnye kategorii trekhmernykh mnogoobrazii Fano $V_{12}$”, Matem. zametki, 78:4 (2005), 579–594 | MR | Zbl

[18] Miln Dzh., Etalnye kogomologii, Mir, M., 1983 | MR | Zbl

[19] McKay J., “Graphs, singularities and finite groups”, Proc. Symp. Pure Math., 37 (1980), 183–186. | MR | Zbl

[20] Okonek K., Shneider M., Shpindler Kh., Vektornye rassloeniya na kompleksnykh proektivnykh prostranstvakh, Mir, M., 1984 | MR | Zbl

[21] Orlov D. O., “Isklyuchitelnyi nabor vektornykh rassloenii na mnogoobrazii $V_5$”, Vestn. MGU. Ser. I. Matem., mekh., 1991, no. 5, 69–71 | MR | Zbl

[22] Orlov D. O., “Proektivnye rassloeniya, monoidalnye preobrazovaniya i proizvodnye kategorii kogerentnykh puchkov”, Izv. RAN. Ser. matem., 56:4 (1992), 852–862 | MR | Zbl

[23] Orlov D. O., “Triangulirovannye kategorii osobennostei i D-brany v modelyakh Landau–Ginzburga”, Tr. MIRAN, 246, 2004, 240–262 | MR | Zbl

[24] Samokhin A. V., “Proizvodnaya kategoriya kogerentnykh puchkov na $LG_3^C$”, UMN, 56:3 (2001), 177–178 | MR | Zbl

[25] Samokhin A., “On the derived category of coherent sheaves on a 5-dimensional Fano variety”, C. R. Math. Acad. Sci. Paris, 340:12 (2005), 889–893 | MR | Zbl

[26] Tyurin A. N., “O peresechenii kvadrik”, UMN, 30:6 (1975), 51–99 | MR | Zbl