Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2006_70_3_a1, author = {A. G. Kuznetsov}, title = {Hyperplane sections and derived categories}, journal = {Izvestiya. Mathematics }, pages = {447--547}, publisher = {mathdoc}, volume = {70}, number = {3}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_3_a1/} }
A. G. Kuznetsov. Hyperplane sections and derived categories. Izvestiya. Mathematics , Tome 70 (2006) no. 3, pp. 447-547. http://geodesic.mathdoc.fr/item/IM2_2006_70_3_a1/
[1] Berthelot P., Grothendieck A., Illusie L., Theorie des reductions et theoreme de Riemann-Roch, Lect. Not. Math., 225, Springer-Verlag, Heidelberg, 1971 | MR | Zbl
[2] Bondal A. I., “Predstavleniya assotsiativnykh algebr i kogerentnye puchki”, Izv. AN SSSR. Ser. matem., 53:1 (1989), 25–44 | MR
[3] Bondal A. I., Kapranov M. M., “Predstavimye funktory, funktory Serra i perestroiki”, Izv. AN SSSR. Ser. matem., 53:6 (1989), 1183–1205 | MR
[4] Bondal A., Orlov D., Semiorthogonal decomposition for algebraic varieties, math.AG/9506012
[5] Bondal A., Orlov D., “Derived categories of coherent sheaves”, Proceedings of the International Congress of Mathematicians, V. II (Beijing, 2002), Higher Ed. Press, Beijing, 2002, 47–56 | MR | Zbl
[6] Bondal A., Orlov D., “Reconstruction of a variety from the derived category and groups of autoequivalences”, Compositio Math., 125:3 (2001), 327–344 | DOI | MR | Zbl
[7] Bridgeland T., “Equivalences of triangulated categories and Fourier-Mukai transforms”, Bull. London Math. Soc., 31:1 (1999), 25–34 | DOI | MR | Zbl
[8] Bridgeland T., King A., Ried M., “The McKay correspondence as an equivalence of derived categories”, J. Amer. Math. Soc., 14:3 (2001), 535–554 | DOI | MR | Zbl
[9] Chevalley C., The algebraic theory of spinors, Columbia University Press, N. Y., 1954 | MR | Zbl
[10] Desale U., Ramanan S., “Classification of vector bundles of rank 2 on hyperelliptic curves”, Invent. Math., 38:2 (1976), 161–185 | DOI | MR | Zbl
[11] Gonzalez-Sprinberg G., Verdier J.-L., “Construction géométrique de la correspondance de McKay”, Ann. Sci. Éc. Norm. Sup., Ser. 4, 16:3 (1983), 409–449 | MR | Zbl
[12] Hartshorn R., “Residues and duality”, Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64, With an appendix by P. Deligne, Lect. Not. Math., 20, Springer-Verlag, Berlin–N. Y., 1966 | MR | Zbl
[13] Holweck F., Lieu singulier des variétés duales: approche géométrique et applications aux variétés homogènes, Ph. D., Universite Paul Sabatier, Toulouse, 2004
[14] Humphreys J., Conjugacy classes in semisimple algebraic groups, Mathematical Surveys and Monographs, 43, AMS, Providence, 1995 | MR | Zbl
[15] Kapranov M., Vasserot E., “Kleinian singularities, derived categories and Hall algebras”, Math. Ann., 316:3 (2000), 565–576 | DOI | MR | Zbl
[16] King A., “Moduli of representations of finite-dimensional algebras”, Quart. J. Math. Oxford. Ser. (2), 45:180 (1994), 515–530 | DOI | MR | Zbl
[17] Kuznetsov A. G., “Proizvodnye kategorii trekhmernykh mnogoobrazii Fano $V_{12}$”, Matem. zametki, 78:4 (2005), 579–594 | MR | Zbl
[18] Miln Dzh., Etalnye kogomologii, Mir, M., 1983 | MR | Zbl
[19] McKay J., “Graphs, singularities and finite groups”, Proc. Symp. Pure Math., 37 (1980), 183–186. | MR | Zbl
[20] Okonek K., Shneider M., Shpindler Kh., Vektornye rassloeniya na kompleksnykh proektivnykh prostranstvakh, Mir, M., 1984 | MR | Zbl
[21] Orlov D. O., “Isklyuchitelnyi nabor vektornykh rassloenii na mnogoobrazii $V_5$”, Vestn. MGU. Ser. I. Matem., mekh., 1991, no. 5, 69–71 | MR | Zbl
[22] Orlov D. O., “Proektivnye rassloeniya, monoidalnye preobrazovaniya i proizvodnye kategorii kogerentnykh puchkov”, Izv. RAN. Ser. matem., 56:4 (1992), 852–862 | MR | Zbl
[23] Orlov D. O., “Triangulirovannye kategorii osobennostei i D-brany v modelyakh Landau–Ginzburga”, Tr. MIRAN, 246, 2004, 240–262 | MR | Zbl
[24] Samokhin A. V., “Proizvodnaya kategoriya kogerentnykh puchkov na $LG_3^C$”, UMN, 56:3 (2001), 177–178 | MR | Zbl
[25] Samokhin A., “On the derived category of coherent sheaves on a 5-dimensional Fano variety”, C. R. Math. Acad. Sci. Paris, 340:12 (2005), 889–893 | MR | Zbl
[26] Tyurin A. N., “O peresechenii kvadrik”, UMN, 30:6 (1975), 51–99 | MR | Zbl