Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2006_70_2_a6, author = {I. D. Shkredov}, title = {On a problem of {Gowers}}, journal = {Izvestiya. Mathematics }, pages = {385--425}, publisher = {mathdoc}, volume = {70}, number = {2}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_2_a6/} }
I. D. Shkredov. On a problem of Gowers. Izvestiya. Mathematics , Tome 70 (2006) no. 2, pp. 385-425. http://geodesic.mathdoc.fr/item/IM2_2006_70_2_a6/
[1] Van der Waerden B. L., “Beweis einer Baudetschen Vermutung”, Nieuw Arch. Wisk., 15 (1927), 212–216 | Zbl
[2] Erdös P., Turán P., “On some sequences of integers”, J. London Math. Soc., 11 (1936), 261–264 | DOI | Zbl
[3] Roth K. F., “On certain sets of integers”, J. London Math. Soc., 28 (1953), 204–209 | DOI | MR | Zbl
[4] Bourgain J., “On triples in arithmetic progression”, Geom. Funct. Anal., 9 (1999), 968–984 | DOI | MR | Zbl
[5] Szemerédi E., “On sets of integers containing no $k$ elements in arithmetic progression”, Acta Arith., 27 (1975), 199–245 | MR | Zbl
[6] Gowers W. T., “A new proof of Szemerédi's theorem”, Geom. Funct. Anal., 11 (2001), 465–588 | DOI | MR | Zbl
[7] Gowers W. T., “Rough structure and classification”, Geom. Funct. Anal., Special Volume – GAFA2000 “Visions in Mathematics” (Tel Aviv, 1999), Part I, 79–117 | MR | Zbl
[8] Rankin R. A., “Sets of Integers Containing not more than a Given Number of Terms in Arithmetic Progression”, Proc. Roy. Soc. Edinburgh, Sect. A, 65:4 (1961), 332–344 | MR | Zbl
[9] Ajtai M., Szemerédi E., “Sets of lattice points that form no squares”, Stud. Sci. Math. Hungar., 9 (1975), 9–11 | MR | Zbl
[10] Chung F. R. K., Graham R. L., Wilson R. M., “Quasi-random graphs”, Combinatorica, 9:4 (1989), 345–362 | DOI | MR | Zbl
[11] Behrend F. A., “On sets of integers which contain no three terms in arithmetic progression”, Proc. Nat. Acad. Sci., 32 (1946), 331–332 | DOI | MR | Zbl
[12] Vu V. H., “On a question of Gowers”, Ann. of Combinatorics, 6 (2002), 229–233 | DOI | MR | Zbl
[13] Solymosi J., “Note on a generalization of Roth's theorem”, Discrete and computational geometry, 25 (2003), 825–827 | MR | Zbl
[14] Green B., Tao T., The primes contain arbitrarily long arithmetic progressions, math.NT/0404188
[15] Freiman G. A., Osnovaniya strukturnoi teorii slozheniya mnozhestv, Kazanskii gos. ped. in-t, Kazan, 1966 | MR | Zbl
[16] Lankaster P., Teoriya matrits, Nauka, M., 1982 | MR | MR | Zbl
[17] Puankare A., Novye metody nebesnoi mekhaniki. Izbrannye trudy, t. 2, Nauka, M., 1972 | MR | Zbl
[18] Furstenberg H., Recurrence in ergodic theory and combinatorial number theory, Princeton, NJ, 1981 | MR | Zbl
[19] Boshernitzan M., “Quantitative recurrence results”, Invent. math., 113 (1993), 617–631 | DOI | MR | Zbl
[20] Moschevitin N. G., “Ob odnoi teoreme Puankare”, UMN, 53:1 (1998), 219–220 | MR | Zbl
[21] Shkredov I. D., “O vozvraschaemosti v srednem”, Matem. zametki, 72:4 (2002), 625–632 | MR | Zbl
[22] Katok A. B., Khasselblat B., Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999
[23] Khalmosh P. R., Teoriya mery, IL, M., 1953 | MR | MR | Zbl
[24] Bogachev V. I., Osnovy teorii mery, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2003