On a problem of Gowers
Izvestiya. Mathematics , Tome 70 (2006) no. 2, pp. 385-425

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that every set $A\subseteq\{1,\dots,N\}^2$ of cardinality at least $\delta N^2$ contains a triple of the form $\{(k,m),(k+d,m),(k,m+d)\}$, where $d>0$, $\delta>0$ is any real number, $N$ is a positive integer, $N\geqslant \exp\exp\exp\{\delta^{-c}\}$, and $c>0$ is an effective constant.
@article{IM2_2006_70_2_a6,
     author = {I. D. Shkredov},
     title = {On a problem of {Gowers}},
     journal = {Izvestiya. Mathematics },
     pages = {385--425},
     publisher = {mathdoc},
     volume = {70},
     number = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_2_a6/}
}
TY  - JOUR
AU  - I. D. Shkredov
TI  - On a problem of Gowers
JO  - Izvestiya. Mathematics 
PY  - 2006
SP  - 385
EP  - 425
VL  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2006_70_2_a6/
LA  - en
ID  - IM2_2006_70_2_a6
ER  - 
%0 Journal Article
%A I. D. Shkredov
%T On a problem of Gowers
%J Izvestiya. Mathematics 
%D 2006
%P 385-425
%V 70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2006_70_2_a6/
%G en
%F IM2_2006_70_2_a6
I. D. Shkredov. On a problem of Gowers. Izvestiya. Mathematics , Tome 70 (2006) no. 2, pp. 385-425. http://geodesic.mathdoc.fr/item/IM2_2006_70_2_a6/