On a problem of Gowers
Izvestiya. Mathematics , Tome 70 (2006) no. 2, pp. 385-425.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that every set $A\subseteq\{1,\dots,N\}^2$ of cardinality at least $\delta N^2$ contains a triple of the form $\{(k,m),(k+d,m),(k,m+d)\}$, where $d>0$, $\delta>0$ is any real number, $N$ is a positive integer, $N\geqslant \exp\exp\exp\{\delta^{-c}\}$, and $c>0$ is an effective constant.
@article{IM2_2006_70_2_a6,
     author = {I. D. Shkredov},
     title = {On a problem of {Gowers}},
     journal = {Izvestiya. Mathematics },
     pages = {385--425},
     publisher = {mathdoc},
     volume = {70},
     number = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_2_a6/}
}
TY  - JOUR
AU  - I. D. Shkredov
TI  - On a problem of Gowers
JO  - Izvestiya. Mathematics 
PY  - 2006
SP  - 385
EP  - 425
VL  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2006_70_2_a6/
LA  - en
ID  - IM2_2006_70_2_a6
ER  - 
%0 Journal Article
%A I. D. Shkredov
%T On a problem of Gowers
%J Izvestiya. Mathematics 
%D 2006
%P 385-425
%V 70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2006_70_2_a6/
%G en
%F IM2_2006_70_2_a6
I. D. Shkredov. On a problem of Gowers. Izvestiya. Mathematics , Tome 70 (2006) no. 2, pp. 385-425. http://geodesic.mathdoc.fr/item/IM2_2006_70_2_a6/

[1] Van der Waerden B. L., “Beweis einer Baudetschen Vermutung”, Nieuw Arch. Wisk., 15 (1927), 212–216 | Zbl

[2] Erdös P., Turán P., “On some sequences of integers”, J. London Math. Soc., 11 (1936), 261–264 | DOI | Zbl

[3] Roth K. F., “On certain sets of integers”, J. London Math. Soc., 28 (1953), 204–209 | DOI | MR | Zbl

[4] Bourgain J., “On triples in arithmetic progression”, Geom. Funct. Anal., 9 (1999), 968–984 | DOI | MR | Zbl

[5] Szemerédi E., “On sets of integers containing no $k$ elements in arithmetic progression”, Acta Arith., 27 (1975), 199–245 | MR | Zbl

[6] Gowers W. T., “A new proof of Szemerédi's theorem”, Geom. Funct. Anal., 11 (2001), 465–588 | DOI | MR | Zbl

[7] Gowers W. T., “Rough structure and classification”, Geom. Funct. Anal., Special Volume – GAFA2000 “Visions in Mathematics” (Tel Aviv, 1999), Part I, 79–117 | MR | Zbl

[8] Rankin R. A., “Sets of Integers Containing not more than a Given Number of Terms in Arithmetic Progression”, Proc. Roy. Soc. Edinburgh, Sect. A, 65:4 (1961), 332–344 | MR | Zbl

[9] Ajtai M., Szemerédi E., “Sets of lattice points that form no squares”, Stud. Sci. Math. Hungar., 9 (1975), 9–11 | MR | Zbl

[10] Chung F. R. K., Graham R. L., Wilson R. M., “Quasi-random graphs”, Combinatorica, 9:4 (1989), 345–362 | DOI | MR | Zbl

[11] Behrend F. A., “On sets of integers which contain no three terms in arithmetic progression”, Proc. Nat. Acad. Sci., 32 (1946), 331–332 | DOI | MR | Zbl

[12] Vu V. H., “On a question of Gowers”, Ann. of Combinatorics, 6 (2002), 229–233 | DOI | MR | Zbl

[13] Solymosi J., “Note on a generalization of Roth's theorem”, Discrete and computational geometry, 25 (2003), 825–827 | MR | Zbl

[14] Green B., Tao T., The primes contain arbitrarily long arithmetic progressions, math.NT/0404188

[15] Freiman G. A., Osnovaniya strukturnoi teorii slozheniya mnozhestv, Kazanskii gos. ped. in-t, Kazan, 1966 | MR | Zbl

[16] Lankaster P., Teoriya matrits, Nauka, M., 1982 | MR | MR | Zbl

[17] Puankare A., Novye metody nebesnoi mekhaniki. Izbrannye trudy, t. 2, Nauka, M., 1972 | MR | Zbl

[18] Furstenberg H., Recurrence in ergodic theory and combinatorial number theory, Princeton, NJ, 1981 | MR | Zbl

[19] Boshernitzan M., “Quantitative recurrence results”, Invent. math., 113 (1993), 617–631 | DOI | MR | Zbl

[20] Moschevitin N. G., “Ob odnoi teoreme Puankare”, UMN, 53:1 (1998), 219–220 | MR | Zbl

[21] Shkredov I. D., “O vozvraschaemosti v srednem”, Matem. zametki, 72:4 (2002), 625–632 | MR | Zbl

[22] Katok A. B., Khasselblat B., Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999

[23] Khalmosh P. R., Teoriya mery, IL, M., 1953 | MR | MR | Zbl

[24] Bogachev V. I., Osnovy teorii mery, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2003