On differential invariants of geometric structures
Izvestiya. Mathematics , Tome 70 (2006) no. 2, pp. 307-362

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that if the fibre dimension $m$ of a bundle of geometric structures exceeds the dimension $n$ of its base, then the number of sufficiently general functionally independent local differential invariants of the bundle increases to infinity as the differential degree of these invariants grows. For $m\le n$ we describe all but two canonical forms to which every sufficiently general geometric structure can be reduced by an appropriate coordinate change on the base. The results obtained may be generalized.
@article{IM2_2006_70_2_a4,
     author = {R. A. Sarkisyan},
     title = {On differential invariants of geometric structures},
     journal = {Izvestiya. Mathematics },
     pages = {307--362},
     publisher = {mathdoc},
     volume = {70},
     number = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_2_a4/}
}
TY  - JOUR
AU  - R. A. Sarkisyan
TI  - On differential invariants of geometric structures
JO  - Izvestiya. Mathematics 
PY  - 2006
SP  - 307
EP  - 362
VL  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2006_70_2_a4/
LA  - en
ID  - IM2_2006_70_2_a4
ER  - 
%0 Journal Article
%A R. A. Sarkisyan
%T On differential invariants of geometric structures
%J Izvestiya. Mathematics 
%D 2006
%P 307-362
%V 70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2006_70_2_a4/
%G en
%F IM2_2006_70_2_a4
R. A. Sarkisyan. On differential invariants of geometric structures. Izvestiya. Mathematics , Tome 70 (2006) no. 2, pp. 307-362. http://geodesic.mathdoc.fr/item/IM2_2006_70_2_a4/