On differential invariants of geometric structures
Izvestiya. Mathematics , Tome 70 (2006) no. 2, pp. 307-362.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that if the fibre dimension $m$ of a bundle of geometric structures exceeds the dimension $n$ of its base, then the number of sufficiently general functionally independent local differential invariants of the bundle increases to infinity as the differential degree of these invariants grows. For $m\le n$ we describe all but two canonical forms to which every sufficiently general geometric structure can be reduced by an appropriate coordinate change on the base. The results obtained may be generalized.
@article{IM2_2006_70_2_a4,
     author = {R. A. Sarkisyan},
     title = {On differential invariants of geometric structures},
     journal = {Izvestiya. Mathematics },
     pages = {307--362},
     publisher = {mathdoc},
     volume = {70},
     number = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_2_a4/}
}
TY  - JOUR
AU  - R. A. Sarkisyan
TI  - On differential invariants of geometric structures
JO  - Izvestiya. Mathematics 
PY  - 2006
SP  - 307
EP  - 362
VL  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2006_70_2_a4/
LA  - en
ID  - IM2_2006_70_2_a4
ER  - 
%0 Journal Article
%A R. A. Sarkisyan
%T On differential invariants of geometric structures
%J Izvestiya. Mathematics 
%D 2006
%P 307-362
%V 70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2006_70_2_a4/
%G en
%F IM2_2006_70_2_a4
R. A. Sarkisyan. On differential invariants of geometric structures. Izvestiya. Mathematics , Tome 70 (2006) no. 2, pp. 307-362. http://geodesic.mathdoc.fr/item/IM2_2006_70_2_a4/

[1] Lie S., Gesammetlte Abhandlungen, Teubner, Leipzig, 1922–1937 | Zbl

[2] Cartan E., ØE uvres Completès, Gauthier-Villars, Paris, 1952–1955 | Zbl

[3] Tresse A., “Sur les invariants differentiels des groupes continues de transformations”, Acta Math., 18 (1894), 1–88 | DOI | MR | Zbl

[4] Tresse A., Determination des invariants punctuels de l'equation differentielle ordinnaire de second ordre $y''=\omega(x,y,y')$, Hirzel, Leipzig, 1896 | Zbl

[5] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR | Zbl

[6] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR | Zbl

[7] Ibragimov N. Kh., Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983 | MR | Zbl

[8] Kumpera A., “Invariants differentiels d'un pseudogroupe de Lie”, J. Diff. Geom., 10 (1975), 289–416 | MR | MR | Zbl

[9] Thomas T. Y., The differential invariants of generalized spaces, Cambridge Univ. Press, Cambridge, 1934 | Zbl

[10] Alekseevskii D. V., Vinogradov A. M., Lychagin V. V., “Geometriya. 1. Osnovnye idei i ponyatiya differentsialnoi geometrii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 28, VINITI, M., 1988 | MR | Zbl

[11] Pommare Zh., Sistemy uravnenii s chastnymi proizvodnymi i psevdogruppy Li, Mir, M., 1983 | MR | Zbl

[12] Vinberg E. B., Onischik A. L., Seminar po gruppam Li i algebraicheskim gruppam, Nauka, M., 1988 | MR | Zbl

[13] Kobayasi Sh., Gruppy preobrazovanii v differentsialnoi geometrii, Nauka, M., 1986 | MR | Zbl

[14] Onischik A. L., Topologiya tranzitivnykh grupp preobrazovanii, Fizmatlit, M., 1995 | MR | Zbl

[15] Burbaki N., Gruppy i algebry Li, 1, Mir, M., 1972 | MR | Zbl

[16] Burbaki N., Gruppy i algebry Li, 2, Mir, M., 1976 | MR

[17] Burbaki N., Gruppy i algebry Li, 3, Mir, M., 1978 | MR

[18] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1979 | MR | Zbl