The modified multiplicative integral and derivative of arbitrary order on the semiaxis
Izvestiya. Mathematics , Tome 70 (2006) no. 2, pp. 211-231
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the modified strong dyadic integral and derivative
in $L_q({\mathbb R}_+)$, $1\le q\le 2$. We establish conditions
for their existence, study how the behaviour of the
structural characteristics of a function is related to that of
its derivative (integral), and prove an embedding theorem
of Hardy–Littlewood–Sobolev type.
@article{IM2_2006_70_2_a0,
author = {S. S. Volosivets},
title = {The modified multiplicative integral and derivative of arbitrary order on the semiaxis},
journal = {Izvestiya. Mathematics },
pages = {211--231},
publisher = {mathdoc},
volume = {70},
number = {2},
year = {2006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_2_a0/}
}
S. S. Volosivets. The modified multiplicative integral and derivative of arbitrary order on the semiaxis. Izvestiya. Mathematics , Tome 70 (2006) no. 2, pp. 211-231. http://geodesic.mathdoc.fr/item/IM2_2006_70_2_a0/