The modified multiplicative integral and derivative of arbitrary order on the semiaxis
Izvestiya. Mathematics , Tome 70 (2006) no. 2, pp. 211-231.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the modified strong dyadic integral and derivative in $L_q({\mathbb R}_+)$, $1\le q\le 2$. We establish conditions for their existence, study how the behaviour of the structural characteristics of a function is related to that of its derivative (integral), and prove an embedding theorem of Hardy–Littlewood–Sobolev type.
@article{IM2_2006_70_2_a0,
     author = {S. S. Volosivets},
     title = {The modified multiplicative integral and derivative of arbitrary order on the semiaxis},
     journal = {Izvestiya. Mathematics },
     pages = {211--231},
     publisher = {mathdoc},
     volume = {70},
     number = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_2_a0/}
}
TY  - JOUR
AU  - S. S. Volosivets
TI  - The modified multiplicative integral and derivative of arbitrary order on the semiaxis
JO  - Izvestiya. Mathematics 
PY  - 2006
SP  - 211
EP  - 231
VL  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2006_70_2_a0/
LA  - en
ID  - IM2_2006_70_2_a0
ER  - 
%0 Journal Article
%A S. S. Volosivets
%T The modified multiplicative integral and derivative of arbitrary order on the semiaxis
%J Izvestiya. Mathematics 
%D 2006
%P 211-231
%V 70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2006_70_2_a0/
%G en
%F IM2_2006_70_2_a0
S. S. Volosivets. The modified multiplicative integral and derivative of arbitrary order on the semiaxis. Izvestiya. Mathematics , Tome 70 (2006) no. 2, pp. 211-231. http://geodesic.mathdoc.fr/item/IM2_2006_70_2_a0/

[1] Butzer P. L., Wagner H. J., “Walsh–Fourier series and the concept of derivative”, Applicable Anal., 3 (1973), 29–46 | DOI | MR | Zbl

[2] Butzer P. L., Wagner H. J., “A calculus for Walsh functions defined on $\mathbb{R}_+$”, Proc. Symp. Naval Res. Laboratory (April 18–20), Washington, D.C., 1973, 75–81 | Zbl

[3] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha. Teoriya i primeneniya, Nauka, M., 1987 | MR | Zbl

[4] Pal J., “On the connection between the concept of a derivative defined on the dyadic field and the Walsh–Fourier transform”, Annales Sci. Univ. Budapest. Sect. Math., 18 (1976), 49–54 | MR | Zbl

[5] Wagner H. J., “On dyadic analysis for functions defined on $\mathbb R_+$”, Proc. Symp. “Theory and applications of Walsh functions”, Coll. Hatfield Polytechnic, 1975, 101–129

[6] Schipp F., Wade W. R., Simon P., Walsh series. An introduction to dyadic harmonic analysis, Akademiai Kiado, Budapest, 1990 | MR | Zbl

[7] Golubov B. I., “O modifitsirovannom silnom dvoichnom integrale i proizvodnoi”, Matem. sb., 193:4 (2002), 37–60 | MR | Zbl

[8] Onneweer C. W., “On the definition of dyadic differentiation”, Applicable Anal., 9 (1979), 267–278 | DOI | MR | Zbl

[9] Golubov B. I., “Modifitsirovannyi dvoichnyi integral i proizvodnaya drobnogo poryadka”, Funktsion. analiz i ego prilozh., 39:2 (2005), 64–70 | MR | Zbl

[10] Onneweer C. W., “Fractional differentiation and Lipschitz spaces on local fields”, Trans. Amer. Math. Soc., 258:1 (1980), 155–165 | DOI | MR | Zbl

[11] Volosivets S. S., “Modifitsirovannyi $\mathbf P$-ichnyi integral i modifitsirovannaya $\mathbf P$-ichnaya proizvodnaya dlya funktsii, opredelennykh na poluosi”, Izv. vuzov. Matematika, 2005, no. 6, 28–39 | MR | Zbl

[12] Berg I., Lefstrem I., Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980 | MR | MR | Zbl

[13] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, 3-e izd., Nauka, M., 1974 | MR | Zbl

[14] Zelin He., “The $p$-adic differential-integral type operator”, Analysis Math., 19 (1993), 65–84 | DOI | MR | Zbl

[15] Stein I, Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR | Zbl