On the recursive greedy algorithm
Izvestiya. Mathematics , Tome 70 (2006) no. 1, pp. 87-108

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the recursive greedy algorithm (RGA) and prove its convergence for any initial function and any dictionary. We get exact (in the power scale) estimates for the rate of convergence of the RGA in the case when the initial function belongs to the class $\mathcal A_1(\mathcal D)$. These estimates are extended to larger classes of initial functions and are used to compare some classes of functions determined by a given dictionary.
@article{IM2_2006_70_1_a3,
     author = {E. D. Livshits},
     title = {On the recursive greedy algorithm},
     journal = {Izvestiya. Mathematics },
     pages = {87--108},
     publisher = {mathdoc},
     volume = {70},
     number = {1},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_1_a3/}
}
TY  - JOUR
AU  - E. D. Livshits
TI  - On the recursive greedy algorithm
JO  - Izvestiya. Mathematics 
PY  - 2006
SP  - 87
EP  - 108
VL  - 70
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2006_70_1_a3/
LA  - en
ID  - IM2_2006_70_1_a3
ER  - 
%0 Journal Article
%A E. D. Livshits
%T On the recursive greedy algorithm
%J Izvestiya. Mathematics 
%D 2006
%P 87-108
%V 70
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2006_70_1_a3/
%G en
%F IM2_2006_70_1_a3
E. D. Livshits. On the recursive greedy algorithm. Izvestiya. Mathematics , Tome 70 (2006) no. 1, pp. 87-108. http://geodesic.mathdoc.fr/item/IM2_2006_70_1_a3/