Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2006_70_1_a3, author = {E. D. Livshits}, title = {On the recursive greedy algorithm}, journal = {Izvestiya. Mathematics }, pages = {87--108}, publisher = {mathdoc}, volume = {70}, number = {1}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_1_a3/} }
E. D. Livshits. On the recursive greedy algorithm. Izvestiya. Mathematics , Tome 70 (2006) no. 1, pp. 87-108. http://geodesic.mathdoc.fr/item/IM2_2006_70_1_a3/
[1] Galatenko V. V., Livshits E. D., “Ob ustoichivosti zhadnykh razlozhenii k oshibkam v vychislenii koeffitsientov”, Tez. dokladov 12-i Saratovskoi zimnei shkoly “Sovremennye problemy teorii funktsii i ikh prilozheniya”, UNTs “Kolledzh”, Saratov, 2004, 52–53
[2] Livshits E. D., “O skorosti skhodimosti chisto zhadnogo algoritma”, Matem. zametki, 76:4 (2004), 539–552 | MR | Zbl
[3] Livshits E. D., Temlyakov V. N., “O skhodimosti slabogo gridi-algoritma”, Tr. Matem. in-ta im. V. A. Steklova RAN, 232, 2001, 236–247 | MR | Zbl
[4] Silnichenko A., “O skorosti skhodimosti zhadnogo algoritma”, Matem. zametki, 76:4 (2004), 628–632 | MR | Zbl
[5] Stechkin S. B., “Ob absolyutnoi skhodimosti ortogonalnykh ryadov”, Dokl. AN SSSR, 102:1 (1955), 37–40 | MR | Zbl
[6] Barron A., “Universal approximation bounds for superposition of $n$ sigmoidal functions”, IEEE Transactions on Information Theory, 39 (1993), 930–945 | DOI | MR | Zbl
[7] Buhlmann P., Boosting for high-dimensional linear models, , 2004 http://stat.ethz.ch/\allowbreakb̃uhlmann/bibliog.html
[8] Davis G., Mallat S., Avellaneda M., “Adaptive greedy approximations”, Constructive Approximation, 13 (1997), 57–98 | DOI | MR | Zbl
[9] DeVore R. A., Temlyakov V. N., “Some remarks on Greedy Algorithms”, Adv. Comput. Math., 5 (1996), 173–187 | DOI | MR | Zbl
[10] Friedman J. H., Stueuzle W., “Projection pursuit regression”, J. Amer. Statist. Assoc., 76 (1981), 817–823 | DOI | MR
[11] Galatenko V. V., Livshitz E. D., “On the convergence of Approximate Weak Greedy Algorithms”, East J. Approx., 9:1 (2003), 43–49 | MR | Zbl
[12] Gribonval R., Nielsen M., “Approximate Weak Greedy Algorithms”, Adv. Comput. Math., 14:4 (2001), 361–378 | DOI | MR | Zbl
[13] Jones L. K., “On a conjecture of Huber concerning the convergence of PP-regression”, Ann. Statist., 15 (1987), 880–882 | DOI | MR | Zbl
[14] Jones L., “A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and network training”, Ann. Statist., 20 (1992), 608–613 | DOI | MR | Zbl
[15] Konyagin S. V., Temlyakov V. N., “Rate of convergence of Pure Greedy Algorithm”, East J. Approx., 5 (1999), 493–499 | MR | Zbl
[16] Livshitz E. D., Temlyakov V. N., “Two lower estimates in greedy approximation”, Constructive Approximation, 19 (2003), 509–523 | DOI | MR | Zbl
[17] Rejtö L., Walter G. G., “Remarks on projection pursuit regression and density estimation”, Stochastic Analysis and Application, 10 (1992), 213–222 | DOI | MR | Zbl
[18] Schmidt E., “Zur Theorie der linearen und nichtlinearen integralgleichungen. I”, Math. Ann., 63 (1906–1907), 433–476 | DOI | MR
[19] Temlyakov V. N., “Weak greedy algorithms”, Adv. Comput. Math., 12:2, 3 (2000), 213–227 | DOI | MR | Zbl
[20] Temlyakov V. N., A criterion for convergence of Weak Greedy Algorithms, http://www.math.sc.edu/ĩmip/00.html – 00:21
[21] Temlyakov V. N., “Nonlinear Methods of Approximation”, Found. Comput. Math., 3 (2003), 33–107 | DOI | MR | Zbl