On the recursive greedy algorithm
Izvestiya. Mathematics , Tome 70 (2006) no. 1, pp. 87-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the recursive greedy algorithm (RGA) and prove its convergence for any initial function and any dictionary. We get exact (in the power scale) estimates for the rate of convergence of the RGA in the case when the initial function belongs to the class $\mathcal A_1(\mathcal D)$. These estimates are extended to larger classes of initial functions and are used to compare some classes of functions determined by a given dictionary.
@article{IM2_2006_70_1_a3,
     author = {E. D. Livshits},
     title = {On the recursive greedy algorithm},
     journal = {Izvestiya. Mathematics },
     pages = {87--108},
     publisher = {mathdoc},
     volume = {70},
     number = {1},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_1_a3/}
}
TY  - JOUR
AU  - E. D. Livshits
TI  - On the recursive greedy algorithm
JO  - Izvestiya. Mathematics 
PY  - 2006
SP  - 87
EP  - 108
VL  - 70
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2006_70_1_a3/
LA  - en
ID  - IM2_2006_70_1_a3
ER  - 
%0 Journal Article
%A E. D. Livshits
%T On the recursive greedy algorithm
%J Izvestiya. Mathematics 
%D 2006
%P 87-108
%V 70
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2006_70_1_a3/
%G en
%F IM2_2006_70_1_a3
E. D. Livshits. On the recursive greedy algorithm. Izvestiya. Mathematics , Tome 70 (2006) no. 1, pp. 87-108. http://geodesic.mathdoc.fr/item/IM2_2006_70_1_a3/

[1] Galatenko V. V., Livshits E. D., “Ob ustoichivosti zhadnykh razlozhenii k oshibkam v vychislenii koeffitsientov”, Tez. dokladov 12-i Saratovskoi zimnei shkoly “Sovremennye problemy teorii funktsii i ikh prilozheniya”, UNTs “Kolledzh”, Saratov, 2004, 52–53

[2] Livshits E. D., “O skorosti skhodimosti chisto zhadnogo algoritma”, Matem. zametki, 76:4 (2004), 539–552 | MR | Zbl

[3] Livshits E. D., Temlyakov V. N., “O skhodimosti slabogo gridi-algoritma”, Tr. Matem. in-ta im. V. A. Steklova RAN, 232, 2001, 236–247 | MR | Zbl

[4] Silnichenko A., “O skorosti skhodimosti zhadnogo algoritma”, Matem. zametki, 76:4 (2004), 628–632 | MR | Zbl

[5] Stechkin S. B., “Ob absolyutnoi skhodimosti ortogonalnykh ryadov”, Dokl. AN SSSR, 102:1 (1955), 37–40 | MR | Zbl

[6] Barron A., “Universal approximation bounds for superposition of $n$ sigmoidal functions”, IEEE Transactions on Information Theory, 39 (1993), 930–945 | DOI | MR | Zbl

[7] Buhlmann P., Boosting for high-dimensional linear models, , 2004 http://stat.ethz.ch/\allowbreakb̃uhlmann/bibliog.html

[8] Davis G., Mallat S., Avellaneda M., “Adaptive greedy approximations”, Constructive Approximation, 13 (1997), 57–98 | DOI | MR | Zbl

[9] DeVore R. A., Temlyakov V. N., “Some remarks on Greedy Algorithms”, Adv. Comput. Math., 5 (1996), 173–187 | DOI | MR | Zbl

[10] Friedman J. H., Stueuzle W., “Projection pursuit regression”, J. Amer. Statist. Assoc., 76 (1981), 817–823 | DOI | MR

[11] Galatenko V. V., Livshitz E. D., “On the convergence of Approximate Weak Greedy Algorithms”, East J. Approx., 9:1 (2003), 43–49 | MR | Zbl

[12] Gribonval R., Nielsen M., “Approximate Weak Greedy Algorithms”, Adv. Comput. Math., 14:4 (2001), 361–378 | DOI | MR | Zbl

[13] Jones L. K., “On a conjecture of Huber concerning the convergence of PP-regression”, Ann. Statist., 15 (1987), 880–882 | DOI | MR | Zbl

[14] Jones L., “A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and network training”, Ann. Statist., 20 (1992), 608–613 | DOI | MR | Zbl

[15] Konyagin S. V., Temlyakov V. N., “Rate of convergence of Pure Greedy Algorithm”, East J. Approx., 5 (1999), 493–499 | MR | Zbl

[16] Livshitz E. D., Temlyakov V. N., “Two lower estimates in greedy approximation”, Constructive Approximation, 19 (2003), 509–523 | DOI | MR | Zbl

[17] Rejtö L., Walter G. G., “Remarks on projection pursuit regression and density estimation”, Stochastic Analysis and Application, 10 (1992), 213–222 | DOI | MR | Zbl

[18] Schmidt E., “Zur Theorie der linearen und nichtlinearen integralgleichungen. I”, Math. Ann., 63 (1906–1907), 433–476 | DOI | MR

[19] Temlyakov V. N., “Weak greedy algorithms”, Adv. Comput. Math., 12:2, 3 (2000), 213–227 | DOI | MR | Zbl

[20] Temlyakov V. N., A criterion for convergence of Weak Greedy Algorithms, http://www.math.sc.edu/ĩmip/00.html – 00:21

[21] Temlyakov V. N., “Nonlinear Methods of Approximation”, Found. Comput. Math., 3 (2003), 33–107 | DOI | MR | Zbl