Birational geometry of Fano direct products
Izvestiya. Mathematics , Tome 69 (2005) no. 6, pp. 1225-1255

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the birational superrigidity of direct products $V=F_1\times\dots\times F_K$ of primitive Fano varieties of the following two types: either $F_i\subset\mathbb P^M$ is a general hypersurface of degree $M$, $M\geqslant 6$, or $F_i\stackrel{\sigma}{\to}{\mathbb P}^M$ is a general double space of index 1, $M\geqslant 3$. In particular, every structure of a rationally connected fibre space on $V$ is given by the projection onto a direct factor. The proof is based on the connectedness principle of Shokurov and Kollár and the technique of hypertangent divisors.
@article{IM2_2005_69_6_a8,
     author = {A. V. Pukhlikov},
     title = {Birational geometry of {Fano} direct products},
     journal = {Izvestiya. Mathematics },
     pages = {1225--1255},
     publisher = {mathdoc},
     volume = {69},
     number = {6},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a8/}
}
TY  - JOUR
AU  - A. V. Pukhlikov
TI  - Birational geometry of Fano direct products
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 1225
EP  - 1255
VL  - 69
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a8/
LA  - en
ID  - IM2_2005_69_6_a8
ER  - 
%0 Journal Article
%A A. V. Pukhlikov
%T Birational geometry of Fano direct products
%J Izvestiya. Mathematics 
%D 2005
%P 1225-1255
%V 69
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a8/
%G en
%F IM2_2005_69_6_a8
A. V. Pukhlikov. Birational geometry of Fano direct products. Izvestiya. Mathematics , Tome 69 (2005) no. 6, pp. 1225-1255. http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a8/