Birational geometry of Fano direct products
Izvestiya. Mathematics , Tome 69 (2005) no. 6, pp. 1225-1255.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the birational superrigidity of direct products $V=F_1\times\dots\times F_K$ of primitive Fano varieties of the following two types: either $F_i\subset\mathbb P^M$ is a general hypersurface of degree $M$, $M\geqslant 6$, or $F_i\stackrel{\sigma}{\to}{\mathbb P}^M$ is a general double space of index 1, $M\geqslant 3$. In particular, every structure of a rationally connected fibre space on $V$ is given by the projection onto a direct factor. The proof is based on the connectedness principle of Shokurov and Kollár and the technique of hypertangent divisors.
@article{IM2_2005_69_6_a8,
     author = {A. V. Pukhlikov},
     title = {Birational geometry of {Fano} direct products},
     journal = {Izvestiya. Mathematics },
     pages = {1225--1255},
     publisher = {mathdoc},
     volume = {69},
     number = {6},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a8/}
}
TY  - JOUR
AU  - A. V. Pukhlikov
TI  - Birational geometry of Fano direct products
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 1225
EP  - 1255
VL  - 69
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a8/
LA  - en
ID  - IM2_2005_69_6_a8
ER  - 
%0 Journal Article
%A A. V. Pukhlikov
%T Birational geometry of Fano direct products
%J Izvestiya. Mathematics 
%D 2005
%P 1225-1255
%V 69
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a8/
%G en
%F IM2_2005_69_6_a8
A. V. Pukhlikov. Birational geometry of Fano direct products. Izvestiya. Mathematics , Tome 69 (2005) no. 6, pp. 1225-1255. http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a8/

[1] Corti A., “Singularities of linear systems and 3-fold birational geometry”, Explicit Birational Geometry of Threefolds, London Mathematical Society Lecture Note Series, 281, Cambridge University Press, Cambridge, 2000, 259–312 | MR | Zbl

[2] Corti A., Pukhlikov A., Reid M., “Fano $3$-fold hypersurfaces”, Explicit Birational Geometry of Threefolds, London Mathematical Society Lecture Note Series, 281, Cambridge University Press, Cambridge, 2000, 175–258 | MR | Zbl

[3] Corti A., Reid M., “Foreword to “Explicit Birational Geometry of Threefolds””, London Mathematical Society Lecture Note Series, 281, Cambridge University Press, Cambridge, 2000, 1–20 | MR | Zbl

[4] Esnault H., Viehweg E., Lectures on vanishing theorems, DMV-Seminar, 20, Birkhäuser, Basel, 1992 | MR | Zbl

[5] Fano G., “Sopra alcune varieta algebriche a tre dimensioni aventi tutti i generi nulli”, Atti Acc. Torino, 43 (1908), 973–977

[6] Fano G., “Osservazioni sopra alcune varieta non razionali aventi tutti i generi nulli”, Atti Acc. Torino, 50 (1915), 1067–1072 | Zbl

[7] Fano G., “Nouve ricerche sulle varieta algebriche a tre dimensioni a curve-sezioni canoniche”, Comm. Rent. Ac. Sci., 11 (1947), 635–720 | MR | Zbl

[8] Fulton W., Intersection Theory, Springer-Verlag, Berlin, 1984 | MR | Zbl

[9] Graber T., Harris J., Starr J., “Families of rationally connected varieties”, J. Amer. Math. Soc., 16:1 (2002), 57–67 | DOI | MR

[10] Grinenko M. M., “Biratsionalnye avtomorfizmy trekhmernogo dvoinogo konusa”, Matem. sb., 189:7 (1998), 37–52 | MR | Zbl

[11] Grinenko M. M., “Biratsionalnye svoistva puchkov poverkhnostei del Petstso stepeni 1 i 2”, Matem. sb., 191:5 (2000), 17–38 | MR | Zbl

[12] Grinenko M. M., “Biratsionalnye svoistva puchkov poverkhnostei del Petstso stepeni 1 i 2, II”, Matem. sb., 194:5 (2003), 31–60 | MR | Zbl

[13] Iskovskikh V. A., “Biratsionalnye avtomorfizmy trekhmernykh algebraicheskikh mnogoobrazii”, Itogi nauki i tekhniki. Sovr. probl. matem., 12, VINITI, M., 1979, 159–235 | MR

[14] Iskovskikh V. A., Manin Yu. I., “Trekhmernye kvartiki i kontrprimery k probleme Lyurota”, Matem. sb., 86:1 (1971), 140–166 | Zbl

[15] Kawamata Y., “A generalization of Kodaira–Ramanujam's vanishing theorem”, Math. Ann., 261 (1982), 43–46 | DOI | MR | Zbl

[16] Kollár J. et al., Flips and Abundance for Algebraic Threefolds, Asterisque, 211, SMF, Paris, 1993

[17] Kollár J., Rational curves on algebraic varieties, Springer-Verlag, Berlin, 1996 | MR

[18] Kollár J., “Nonrational covers of ${\mathbb C}{\mathbb P}^m\times{\mathbb C}{\mathbb P}^n$”, Explicit Birational Geometry of Threefolds, London Mathematical Society Lecture Note Series, 281, Cambridge University Press, Cambridge, 2000, 51–71 | MR | Zbl

[19] Manin Yu. I., “Rational surfaces over perfect fields”, Publ. Math. IHES, 30 (1966), 55–113 | MR

[20] Manin Yu. I., “Ratsionalnye poverkhnosti nad sovershennymi polyami, II”, Matem. sb., 72 (1967), 161–192 | MR | Zbl

[21] Manin Yu. I., Kubicheskie formy. Algebra, geometriya, arifmetika, Nauka, M., 1972 | MR

[22] Noether M., “Über Flächen welche Schaaren rationaler Kurven besitzen”, Math. Ann., 3 (1871), 161–227 | DOI

[23] Pukhlikov A. V., “Birational isomorphisms of four-dimensional quintics”, Invent. Math., 87 (1987), 303–329 | DOI | MR | Zbl

[24] Pukhlikov A. V., “Biratsionalnye avtomorfizmy dvoinogo prostranstva i dvoinoi kvadriki”, Izv. AN SSSR. Ser. matem., 52:1 (1988), 229–239 | MR

[25] Pukhlikov A. V., “Biratsionalnye avtomorfizmy trekhmernoi kvartiki s prosteishei osobennostyu”, Matem. sb., 135:4 (1988), 472–496 | MR | Zbl

[26] Pukhlikov A. V., “Zamechanie o teoreme V. A. Iskovskikh i Yu. I. Manina o trekhmernoi kvartike”, Tr. Matem. in-ta im. V. A. Steklova RAN, 208 (1995), 278–289 | MR | Zbl

[27] Pukhlikov A. V., “Essentials of the method of maximal singularities”, Explicit Birational Geometry of Threefolds, London Mathematical Society Lecture Note Series, 281, Cambridge University Press, Cambridge, 2000, 73–100 | MR | Zbl

[28] Pukhlikov A. V., “Biratsionalnye avtomorfizmy trekhmernykh algebraicheskikh mnogoobrazii s puchkom poverkhnostei del Petstso”, Izv. RAN. Ser. matem., 62:1 (1998), 123–164 | MR | Zbl

[29] Pukhlikov A. V., “Birational automorphisms of Fano hypersurfaces”, Invent. Math., 134:2 (1998), 401–426 | DOI | MR | Zbl

[30] Pukhlikov A. V., “Biratsionalno zhestkie dvoinye giperpoverkhnosti Fano”, Matem. sb., 191:6 (2000), 101–126 | MR | Zbl

[31] Pukhlikov A. V., “Biratsionalno zhestkie rassloeniya Fano”, Izv. RAN. Ser. matem., 64:3 (2000), 131–150 | MR | Zbl

[32] Pukhlikov A. V., “Birationally rigid Fano complete intersections”, Crelle J. für die reine und angew. Math., 541 (2001), 55–79 | DOI | MR | Zbl

[33] Pukhlikov A. V., “Biratsionalno zhestkie giperpoverkhnosti Fano s izolirovannymi osobennostyami”, Matem. sb., 193:3 (2002), 135–160 | MR

[34] Pukhlikov A. V., “Biratsionalno zhestkie giperpoverkhnosti Fano”, Izv. RAN. Ser. matem., 66:6 (2002), 159–186 | MR | Zbl

[35] Pukhlikov A. V., “Biratsionalno zhestkie iterirovannye dvoinye nakrytiya Fano”, Izv. RAN. Ser. matem., 67:3 (2003), 139–182 | MR | Zbl

[36] Pukhlikov A. V., “Biratsionalno zhestkie mnogoobraziya s puchkom dvoinykh nakrytii Fano, I”, Matem. sb., 195:7 (2004), 127–160 | MR | Zbl

[37] Pukhlikov A. V., “Biratsionalno zhestkie mnogoobraziya s puchkom dvoinykh nakrytii Fano, II”, Matem. sb., 195:11 (2004), 119–156 | MR | Zbl

[38] Pukhlikov A. V., Birational geometry of Fano direct products, E-print math.AG/0405011 | MR

[39] Sarkisov V. G., “Biratsionalnye avtomorfizmy rassloenii na koniki”, Izv. AN SSSR. Ser. matem., 44:4 (1980), 918–945 | MR | Zbl

[40] Sarkisov V. G., “O strukturakh rassloenii na koniki”, Izv. AN SSSR. Ser. matem., 46:2 (1982), 371–408 | MR | Zbl

[41] Shokurov V. V., “Trekhmernye logperestroiki”, Izv. AN SSSR. Ser. matem., 56:1 (1992), 105–203 | MR | Zbl

[42] Sobolev I. V., “Ob odnoi serii biratsionalno zhestkikh mnogoobrazii s puchkom giperpoverkhnostei Fano”, Matem. sb., 192:10 (2001), 123–130 | MR | Zbl

[43] Sobolev I. V., “Biratsionalnye avtomorfizmy odnogo klassa mnogoobrazii, rassloennykh na kubicheskie poverkhnosti”, Izv. RAN. Ser. matem., 66:1 (2002), 203–224 | MR | Zbl

[44] Viehweg E., “Vanishing theorems”, Crelle J. für die reine und angew. Math., 335 (1982), 1–8 | MR | Zbl