$C^m$-extension of subharmonic functions
Izvestiya. Mathematics , Tome 69 (2005) no. 6, pp. 1211-1223.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given $m\in(1,3)$ and any (Jordan) $B$-domain $D$ in $\mathbb R^2$, we prove that any function of class $C^m(\,\overline D\,)$ that is subharmonic in $D$ can be extended to a function of class $C^m$ that is subharmonic on the whole $\mathbb R^2$ and give an estimate of the $C^{m-1}$-norm of its gradient. The corresponding assertion for $m\in[0,1)\cup[3,+\infty)$ is false even for discs. These results also hold for balls $D$ in $\mathbb R^N$, $N\in\{3,4,\dots\}$. We also obtain some corollaries, including the corresponding assertions on the $\operatorname{Lip}^m$-extension of subharmonic functions.
@article{IM2_2005_69_6_a7,
     author = {P. V. Paramonov},
     title = {$C^m$-extension of subharmonic functions},
     journal = {Izvestiya. Mathematics },
     pages = {1211--1223},
     publisher = {mathdoc},
     volume = {69},
     number = {6},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a7/}
}
TY  - JOUR
AU  - P. V. Paramonov
TI  - $C^m$-extension of subharmonic functions
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 1211
EP  - 1223
VL  - 69
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a7/
LA  - en
ID  - IM2_2005_69_6_a7
ER  - 
%0 Journal Article
%A P. V. Paramonov
%T $C^m$-extension of subharmonic functions
%J Izvestiya. Mathematics 
%D 2005
%P 1211-1223
%V 69
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a7/
%G en
%F IM2_2005_69_6_a7
P. V. Paramonov. $C^m$-extension of subharmonic functions. Izvestiya. Mathematics , Tome 69 (2005) no. 6, pp. 1211-1223. http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a7/

[1] Melnikov M. S., Paramonov P. V., “$C^1$-prodolzhenie subgarmonicheskikh funktsii s zamknutykh zhordanovykh oblastei v $\mathbb R^2$”, Izv. RAN. Ser. matem., 68:6 (2004), 105–118 | MR

[2] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[3] O'Farrell A. G., “Rational approximation in Lipschitz norms, II”, Proc. Royal. Irish. Acad., 79A:11 (1979), 103–114 | MR

[4] Verdera J., “$C^m$-approximation by solutions of elliptic equations, and Calderón–Zygmund operators”, Duke Math. J., 55:1 (1987), 157–187 | DOI | MR | Zbl

[5] Vitushkin A. G., “Analiticheskaya emkost mnozhestv v zadachakh teorii priblizhenii”, UMN, 22:6 (1967), 141–199 | MR

[6] Verdera Dzh., Melnikov M. S., Paramonov P. V., “$C^1$-approksimatsiya i prodolzhenie subgarmonicheskikh funktsii”, Matem. sb., 192:4 (2001), 37–58 | MR | Zbl

[7] Reshetnyak Yu. G., “Teorema Liuvillya o konformnykh otobrazheniyakh pri minimalnykh predpolozheniyakh regulyarnosti”, Sib. matem. zhur., 8:4 (1967), 835–840