Dynamical systems in unramified or totally ramified extensions of a $\mathfrak p$-adic field
Izvestiya. Mathematics , Tome 69 (2005) no. 6, pp. 1279-1287

Voir la notice de l'article provenant de la source Math-Net.Ru

We use local field theory to study a special class of discrete dynamical systems, where the function being iterated is a polynomial whose coefficients belong to the ring of integers in a $\mathfrak p$-adic field.
@article{IM2_2005_69_6_a10,
     author = {P. Svensson},
     title = {Dynamical systems in unramified or totally ramified extensions of a $\mathfrak p$-adic field},
     journal = {Izvestiya. Mathematics },
     pages = {1279--1287},
     publisher = {mathdoc},
     volume = {69},
     number = {6},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a10/}
}
TY  - JOUR
AU  - P. Svensson
TI  - Dynamical systems in unramified or totally ramified extensions of a $\mathfrak p$-adic field
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 1279
EP  - 1287
VL  - 69
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a10/
LA  - en
ID  - IM2_2005_69_6_a10
ER  - 
%0 Journal Article
%A P. Svensson
%T Dynamical systems in unramified or totally ramified extensions of a $\mathfrak p$-adic field
%J Izvestiya. Mathematics 
%D 2005
%P 1279-1287
%V 69
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a10/
%G en
%F IM2_2005_69_6_a10
P. Svensson. Dynamical systems in unramified or totally ramified extensions of a $\mathfrak p$-adic field. Izvestiya. Mathematics , Tome 69 (2005) no. 6, pp. 1279-1287. http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a10/