Dynamical systems in unramified or totally ramified extensions of a $\mathfrak p$-adic field
Izvestiya. Mathematics , Tome 69 (2005) no. 6, pp. 1279-1287.

Voir la notice de l'article provenant de la source Math-Net.Ru

We use local field theory to study a special class of discrete dynamical systems, where the function being iterated is a polynomial whose coefficients belong to the ring of integers in a $\mathfrak p$-adic field.
@article{IM2_2005_69_6_a10,
     author = {P. Svensson},
     title = {Dynamical systems in unramified or totally ramified extensions of a $\mathfrak p$-adic field},
     journal = {Izvestiya. Mathematics },
     pages = {1279--1287},
     publisher = {mathdoc},
     volume = {69},
     number = {6},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a10/}
}
TY  - JOUR
AU  - P. Svensson
TI  - Dynamical systems in unramified or totally ramified extensions of a $\mathfrak p$-adic field
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 1279
EP  - 1287
VL  - 69
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a10/
LA  - en
ID  - IM2_2005_69_6_a10
ER  - 
%0 Journal Article
%A P. Svensson
%T Dynamical systems in unramified or totally ramified extensions of a $\mathfrak p$-adic field
%J Izvestiya. Mathematics 
%D 2005
%P 1279-1287
%V 69
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a10/
%G en
%F IM2_2005_69_6_a10
P. Svensson. Dynamical systems in unramified or totally ramified extensions of a $\mathfrak p$-adic field. Izvestiya. Mathematics , Tome 69 (2005) no. 6, pp. 1279-1287. http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a10/

[1] Albeverio S., Kleden P. K., Khrennikov A. Yu., “Pamyat cheloveka kak $p$-adicheskaya dinamicheskaya sistema”, TMF, 117:3 (1998), 385–396 | MR | Zbl

[2] Arrowsmith D. K., Vivaldi F., “Geometry of $p$-adic sigel discs”, Physica D, 71 (1994), 222–236 | DOI | MR | Zbl

[3] Artin E., Algebraic numbers and algebraic functions, Gordon and Breach Science Publishers, N. Y. –L.–Paris, 1967 | MR | Zbl

[4] Benedetto R., “Hyperbolic maps in $p$-adic dynamics”, Ergodic Theory and Dynamical Systems, 21 (2001), 1–11 | DOI | MR | Zbl

[5] Cassels J. W. S., Local fields, Cambrige Univ. Press, Cambrige, 1986 | MR

[6] Khrennikov A., $p$-adic valued distributions in mathematical physics, Kluwer Academic Publishers, Dordrecht, 1994 | MR | Zbl

[7] Khrennikov A., Non-archimedian analysis: Quantum paradoxes, dynamical systems and biological models, Kluwer Academic Publishers, Dordrecht, 1997 | MR | Zbl

[8] Khrennikov A., “Human subconscious as a $p$-adic dynamical system”, J. Theor. Biology, 193 (1998), 179–196 | DOI

[9] Khrennicov A., Nilson M., “On the number of cycles of $p$-adic dynamical systems”, J. number theory, 90:2 (2001), 255–264 | DOI | MR

[10] Lang S., Algebraic number theory, 2nd ed., Springer-Verlag, Berlin, 1999 | MR

[11] Lidl R., Niderreiter H., Introduction to finite fields and their applications, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl

[12] Lindahl K.-O., “On markovian properties of the dynamical systems over $p$-adic numbers”, Reports from Växjö University, 8 (1999) | Zbl

[13] Nilsson M., “Cycles of monomial and perturbated monomial $p$-adic dynamical systems”, Ann. Math. Blaise Pascal, 7:1 (2000) | MR

[14] Nyqvist R., “Dynamical systems in finite field extension of $p$-adic numbers”, Reports from Växjö University, 12 (1999)

[15] Serre J.-P., Local fields, Springer-Verlag, Heidelberg, 1995 | MR

[16] Vladimirov V. S., Volovich I. V., Zelenov E. I., $p$-adicheskii analiz i matematicheskaya fizika, Fizmatlit, M., 1994 | MR | Zbl

[17] Volovich I. V., “$p$-adic string”, Class. Quant. Grav., 1987, no. 4, 83–87 | DOI | MR