Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2005_69_6_a1, author = {O. A. Zorina}, title = {$C^m$-extension of subholomorphic functions from plane {Jordan} domains}, journal = {Izvestiya. Mathematics }, pages = {1099--1111}, publisher = {mathdoc}, volume = {69}, number = {6}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a1/} }
O. A. Zorina. $C^m$-extension of subholomorphic functions from plane Jordan domains. Izvestiya. Mathematics , Tome 69 (2005) no. 6, pp. 1099-1111. http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a1/
[1] Zorina O. A., “O nepreryvnom prodolzhenii subgolomorfnykh funktsii”, Vestn. Mosk. un-ta. Ser. 1. Matematika. Mekhanika, 2004, no. 4, 30–36 | MR | Zbl
[2] Paramonov P. V., “O $C^m$-prodolzhenii reshenii odnorodnykh ellipticheskikh neravenstv”, Tez. dokladov 11-i Saratovskoi zimnei shkoly “Sovremennye problemy teorii funktsii i ikh prilozheniya”, Saratov, 2002, 149–150
[3] Paramonov P. V., “O $C^m$-prodolzhenii subgarmonicheskikh funktsii”, Izv. RAN Ser. matem., 69:6 (2005), 139–152 | MR | Zbl
[4] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR
[5] Verdera Dzh., Melnikov M. S., Paramonov P. V., “$C^1$-approksimatsiya i prodolzhenie subgarmonicheskikh funktsii”, Matem. sb., 192:4 (2001), 37–58 | MR | Zbl
[6] O'Farrell A. G., “Rational approximations in Lipschitz norms, II”, Proc. Royal Irish Acad., 79A (1979), 104–114
[7] Verdera J., “$C^m$-approximations by solutions of elliptic equations and Calderon-Zygmund operators”, Duke Math J., 55:1 (1987), 157–187 | DOI | MR | Zbl
[8] Paramonov P. V., “O garmonicheskikh approksimatsiyakh v $C^1$-norme”, Matem. sb., 181:10 (1990), 1341–1365 | MR
[9] Vekua I. N., Obobschennye analiticheskie funktsii, Fizmatgiz, M., 1959 | MR
[10] Lib E., Loss M., Analiz, Nauch. kniga, Novosibirsk, 1998
[11] Verdera J., “On $C^m$ rational approximations”, Proc. Amer. Math. Soc., 97 (1986), 621–625 | DOI | MR | Zbl
[12] Melnikov M. S., Paramonov P. V., “$C^1$-prodolzhenie subgarmonicheskikh funktsii s zamknutykh zhordanovykh oblastei v $\mathbb R^2$”, Izv. RAN. Ser. matem., 68:6 (2004), 105–118 | MR
[13] Vitushkin A. G., “Analiticheskaya emkost mnozhestv v zadachakh teorii priblizhenii”, UMN, 22:6 (1967), 141–199 | MR