$C^m$-extension of subholomorphic functions from plane Jordan domains
Izvestiya. Mathematics , Tome 69 (2005) no. 6, pp. 1099-1111

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that every function $f$ of class $C^m(\,\overline{D}\,)$ subholomorphic in $D$ can be extended to a subholomorphic function of class $C^m$ in the whole $\mathbb C$ with an estimate for the $C^m$-norm, where $m\in(0,2)$ and $D$ is an arbitrary Jordan $B$-domain in $\mathbb C$. We obtain some corollaries and an analogue of the above assertion for the classes $\operatorname{Lip}^m$ with $m\in(0,2]$.
@article{IM2_2005_69_6_a1,
     author = {O. A. Zorina},
     title = {$C^m$-extension of subholomorphic functions from plane {Jordan} domains},
     journal = {Izvestiya. Mathematics },
     pages = {1099--1111},
     publisher = {mathdoc},
     volume = {69},
     number = {6},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a1/}
}
TY  - JOUR
AU  - O. A. Zorina
TI  - $C^m$-extension of subholomorphic functions from plane Jordan domains
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 1099
EP  - 1111
VL  - 69
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a1/
LA  - en
ID  - IM2_2005_69_6_a1
ER  - 
%0 Journal Article
%A O. A. Zorina
%T $C^m$-extension of subholomorphic functions from plane Jordan domains
%J Izvestiya. Mathematics 
%D 2005
%P 1099-1111
%V 69
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a1/
%G en
%F IM2_2005_69_6_a1
O. A. Zorina. $C^m$-extension of subholomorphic functions from plane Jordan domains. Izvestiya. Mathematics , Tome 69 (2005) no. 6, pp. 1099-1111. http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a1/