Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2005_69_5_a5, author = {V. O. Manturov}, title = {A proof of {Vassiliev's} conjecture on the planarity of singular links}, journal = {Izvestiya. Mathematics }, pages = {1025--1033}, publisher = {mathdoc}, volume = {69}, number = {5}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_5_a5/} }
V. O. Manturov. A proof of Vassiliev's conjecture on the planarity of singular links. Izvestiya. Mathematics , Tome 69 (2005) no. 5, pp. 1025-1033. http://geodesic.mathdoc.fr/item/IM2_2005_69_5_a5/
[1] Bar-Natan D., “On the Vassiliev knot invariants”, Topology, 34 (1995), 423–475 | DOI | MR
[2] Cairns G., Elton D., “The planarity problem for signed Gauss words”, J. of Knot Theory and Its Ramifications, 2:4 (1993), 359–367 | DOI | MR | Zbl
[3] Cairns G., Elton D., “The planarity problem, II”, J. of Knot Theory and Its Ramifications, 5:2 (1996), 137–144 | DOI | MR | Zbl
[4] Kauffman L. H., “Virtual knot theory”, European J. of Combinatorics, 20:7 (1999), 662–690 | MR
[5] Lovász L., Marx M., “A forbidden substructure characterization of Gauss codes”, Acta Sci. Math. (Szeged), 38:1–2 (1976), 115–119 | MR | Zbl
[6] Manturov V. O., “Atomy, vysotnye atomy, khordovye diagrammy i uzly. Perechislenie atomov maloi slozhnosti s ispolzovaniem yazyka Mathematica 3.0”, Topologicheskie metody v teorii gamiltonovykh sistem, Faktorial, M., 1998, 203–212
[7] Manturov V. O., Teoriya uzlov, RKhD, M.–Izhevsk, 2005
[8] Vassiliev V. A., “Cohomology of knot spaces”, Theory of Singularities and its Applications, ed. V. I. Arnold, AMS, Providence, 1990, 23–69 | MR