A proof of Vassiliev's conjecture on the planarity of singular links
Izvestiya. Mathematics , Tome 69 (2005) no. 5, pp. 1025-1033.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that a finite 4-valent graph with a cross structure at each vertex cannot be embedded in the plane with respect to this structure if and only if there are two cycles without common edges and with precisely one intersection point that is transversal with respect to the cross structure. This leads to an algorithm for recognizing the planarity of such a graph which is quadratic in the number of vertices.
@article{IM2_2005_69_5_a5,
     author = {V. O. Manturov},
     title = {A proof of {Vassiliev's} conjecture on the planarity of singular links},
     journal = {Izvestiya. Mathematics },
     pages = {1025--1033},
     publisher = {mathdoc},
     volume = {69},
     number = {5},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_5_a5/}
}
TY  - JOUR
AU  - V. O. Manturov
TI  - A proof of Vassiliev's conjecture on the planarity of singular links
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 1025
EP  - 1033
VL  - 69
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_5_a5/
LA  - en
ID  - IM2_2005_69_5_a5
ER  - 
%0 Journal Article
%A V. O. Manturov
%T A proof of Vassiliev's conjecture on the planarity of singular links
%J Izvestiya. Mathematics 
%D 2005
%P 1025-1033
%V 69
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_5_a5/
%G en
%F IM2_2005_69_5_a5
V. O. Manturov. A proof of Vassiliev's conjecture on the planarity of singular links. Izvestiya. Mathematics , Tome 69 (2005) no. 5, pp. 1025-1033. http://geodesic.mathdoc.fr/item/IM2_2005_69_5_a5/

[1] Bar-Natan D., “On the Vassiliev knot invariants”, Topology, 34 (1995), 423–475 | DOI | MR

[2] Cairns G., Elton D., “The planarity problem for signed Gauss words”, J. of Knot Theory and Its Ramifications, 2:4 (1993), 359–367 | DOI | MR | Zbl

[3] Cairns G., Elton D., “The planarity problem, II”, J. of Knot Theory and Its Ramifications, 5:2 (1996), 137–144 | DOI | MR | Zbl

[4] Kauffman L. H., “Virtual knot theory”, European J. of Combinatorics, 20:7 (1999), 662–690 | MR

[5] Lovász L., Marx M., “A forbidden substructure characterization of Gauss codes”, Acta Sci. Math. (Szeged), 38:1–2 (1976), 115–119 | MR | Zbl

[6] Manturov V. O., “Atomy, vysotnye atomy, khordovye diagrammy i uzly. Perechislenie atomov maloi slozhnosti s ispolzovaniem yazyka Mathematica 3.0”, Topologicheskie metody v teorii gamiltonovykh sistem, Faktorial, M., 1998, 203–212

[7] Manturov V. O., Teoriya uzlov, RKhD, M.–Izhevsk, 2005

[8] Vassiliev V. A., “Cohomology of knot spaces”, Theory of Singularities and its Applications, ed. V. I. Arnold, AMS, Providence, 1990, 23–69 | MR