Coincidence points of maps of $\mathbb Z_p^n$-spaces
Izvestiya. Mathematics , Tome 69 (2005) no. 5, pp. 913-962

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the set of coincidence points of single-valued and multivalued maps from $\mathbb Z_p^n$-spaces to polyhedra and compact spaces and estimate the dimension of this set. We prove the Cohen–Lusk conjecture for maps to Euclidean spaces provided that the number of coincidences is different from 3.
@article{IM2_2005_69_5_a1,
     author = {A. Yu. Volovikov},
     title = {Coincidence points of maps of $\mathbb Z_p^n$-spaces},
     journal = {Izvestiya. Mathematics },
     pages = {913--962},
     publisher = {mathdoc},
     volume = {69},
     number = {5},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_5_a1/}
}
TY  - JOUR
AU  - A. Yu. Volovikov
TI  - Coincidence points of maps of $\mathbb Z_p^n$-spaces
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 913
EP  - 962
VL  - 69
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_5_a1/
LA  - en
ID  - IM2_2005_69_5_a1
ER  - 
%0 Journal Article
%A A. Yu. Volovikov
%T Coincidence points of maps of $\mathbb Z_p^n$-spaces
%J Izvestiya. Mathematics 
%D 2005
%P 913-962
%V 69
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_5_a1/
%G en
%F IM2_2005_69_5_a1
A. Yu. Volovikov. Coincidence points of maps of $\mathbb Z_p^n$-spaces. Izvestiya. Mathematics , Tome 69 (2005) no. 5, pp. 913-962. http://geodesic.mathdoc.fr/item/IM2_2005_69_5_a1/