Coincidence points of maps of $\mathbb Z_p^n$-spaces
Izvestiya. Mathematics , Tome 69 (2005) no. 5, pp. 913-962.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the set of coincidence points of single-valued and multivalued maps from $\mathbb Z_p^n$-spaces to polyhedra and compact spaces and estimate the dimension of this set. We prove the Cohen–Lusk conjecture for maps to Euclidean spaces provided that the number of coincidences is different from 3.
@article{IM2_2005_69_5_a1,
     author = {A. Yu. Volovikov},
     title = {Coincidence points of maps of $\mathbb Z_p^n$-spaces},
     journal = {Izvestiya. Mathematics },
     pages = {913--962},
     publisher = {mathdoc},
     volume = {69},
     number = {5},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_5_a1/}
}
TY  - JOUR
AU  - A. Yu. Volovikov
TI  - Coincidence points of maps of $\mathbb Z_p^n$-spaces
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 913
EP  - 962
VL  - 69
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_5_a1/
LA  - en
ID  - IM2_2005_69_5_a1
ER  - 
%0 Journal Article
%A A. Yu. Volovikov
%T Coincidence points of maps of $\mathbb Z_p^n$-spaces
%J Izvestiya. Mathematics 
%D 2005
%P 913-962
%V 69
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_5_a1/
%G en
%F IM2_2005_69_5_a1
A. Yu. Volovikov. Coincidence points of maps of $\mathbb Z_p^n$-spaces. Izvestiya. Mathematics , Tome 69 (2005) no. 5, pp. 913-962. http://geodesic.mathdoc.fr/item/IM2_2005_69_5_a1/

[1] Bogatyi S. A., “Tsiklicheskie sistemy, konfiguratsionnye prostranstva i teorema Borsuka–Ulama–Mankkholma–Fenna–Konneta–Koena–Laska”, Tr. Matem. in-ta im. V. A. Steklova, 212 (1996), 46–60 | MR

[2] Bogatyi S. A., “Gipoteza Borsuka, prepyatstvie Ryshkova, interpolyatsiya, chebyshevskie priblizheniya, transversalnaya teorema Tverberga, problemy”, Tr. Matem. in-ta im. V. A. Steklova, 239 (2002), 63–82 | MR | Zbl

[3] Bolotov D. V., “Gipoteza Koena–Laska”, Matem. zametki, 70:1 (2001), 22–26 | MR | Zbl

[4] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., “Topologicheskie metody v teorii nepodvizhnoi tochki mnogoznachnykh otobrazhenii”, UMN, 35:1 (1980), 59–126 | MR | Zbl

[5] Volovikov A. Yu., “Otobrazheniya svobodnykh $\mathbb Z_p$-prostranstv v mnogoobraziya”, Izv. AN SSSR. Ser. matem., 46:1 (1982), 36–55 | MR | Zbl

[6] Volovikov A. Yu., Otobrazheniya svobodnykh $\mathbb Z_p$-prostranstv v mnogoobraziya, Dis. ... kand. fiz.-mat. nauk, MGU, M., 1982

[7] Volovikov A. Yu., “K teoreme Yanga o funktsiyakh na sfere”, Tez. dokl. IX Vsesoyuznoi geometricheskoi konferentsii, Shtiintsa, Kishinev, 1988, 68–69 | MR

[8] Volovikov A. Yu., “Teorema Burzhena–Yanga dlya $\mathbb Z^n_p$-deistviya”, Matem. sb., 183:7 (1992), 115–144 | MR

[9] Volovikov A. Yu., “Ob otobrazheniyakh mnogoobrazii Shtifelya so svobodnym $\mathbb Z_p^n$-deistviem v mnogoobraziya”, UMN, 47:6 (1992), 27–56 | MR

[10] Volovikov A. Yu., “Ob ekvivariantnykh mnogoznachnykh otobrazheniyakh”, UMN, 49:4 (1994), 159–160 | MR | Zbl

[11] Volovikov A. Yu., “K teoreme van Kampena–Floresa”, Matem. zametki, 59:5 (1996), 663–670 | MR | Zbl

[12] Volovikov A. Yu., “Ob indekse $G$-prostranstv”, Matem. sb., 191:9 (2000), 3–22 | MR | Zbl

[13] Volovikov A. Yu., “Ob odnom svoistve funktsii na sfere”, Matem. zametki, 70:5 (2001), 679–690 | MR | Zbl

[14] Volovikov A. Yu., “Tochki sovpadeniya otobrazhenii $\mathbb Z_p^n$-prostranstv v CW-kompleksy”, UMN, 57:1 (2002), 153–154 | MR | Zbl

[15] Volovikov A. Yu., “Ekvivariantnye otobrazheniya i nekotorye zadachi geometrii vypuklykh mnozhestv”, Tr. Matem. in-ta im. V. A. Steklova, 239 (2002), 83–97 | MR | Zbl

[16] Volovikov A. Yu., Schepin E. V., “Antipody i vlozheniya”, Matem. sb., 196:1 (2005), 3–32 | MR | Zbl

[17] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya. Metody teorii gomologii, Nauka, M., 1984 | MR

[18] Sklyarenko E. G., “K teorii obobschennykh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 35:4 (1971), 831–843 | Zbl

[19] Stesin M. I., “Ob aleksandrovskikh poperechnikakh sharov”, DAN SSSR, 217:1 (1974), 31–33 | MR | Zbl

[20] Stinrod N., Epstein D., Kogomologicheskie operatsii, Nauka, M., 1983 | MR

[21] Shvarts A. S., “Nekotorye otsenki roda topologicheskogo prostranstva v smysle Krasnoselskogo”, UMN, 12:4 (1957), 209–214 | MR | Zbl

[22] Shvarts A. S., “Rod rassloennogo prostranstva”, Tr. MMO, 10, URSS, M., 1961, 217–272

[23] Shvarts A. S., “Rod rassloennogo prostranstva”, Tr. MMO, 11, URSS, M., 1962, 99–126 | Zbl

[24] Schepin E. V., “Ob odnoi probleme L. A. Tumarkina”, DAN SSSR, 217:1 (1974), 42–43 | Zbl

[25] Schepin E. V., “Myagkie otobrazheniya mnogoobrazii”, UMN, 39:5 (1984), 209–224 | MR | Zbl

[26] Aepli A., Akiyama Y., “Cohomology operations in Smith theory”, Ann. Scuola. Norm. Sup. Piza, 24 (1970), 741–833 | MR

[27] Björner A., Welker V., “The homology of "$k$-equal" manifolds and related partition lattices”, Adv. Math., 110:2 (1995), 277–313 | DOI | MR

[28] Borel A., “Sur la cohomologie des espaces fibrés principaux et des espaces homogenes de groupes de Lie compact”, Ann. of Math., 57 (1953), 115–207 | DOI | MR | Zbl

[29] Borel A., Seminar on transformation groups, Ann. of Math. Stud., 46, Princeton Univ. Press, Princeton–New Jersey, 1960 | MR | Zbl

[30] Bourgin D. G., “On some separation and mapping theorems”, Comment. Math. Helv., 29 (1955), 199–214 | DOI | MR | Zbl

[31] Bourgin D. G., “Multiplicity of solutions in frame mappings”, Illinois J. Math., 9 (1965), 169–177 | MR | Zbl

[32] Bredon G. E., Introduction to compact transformation groups, Academic Press, N. Y.–London, 1972 | MR | Zbl

[33] Bredon G., Sheaf theory, McGraw-Hill, N. Y., 1967 | MR | Zbl

[34] Chang T., Skjelbred T., “Group actions on Poincaré duality spaces”, Bull. Amer. Math. Soc., 78 (1972), 1024–1026 | DOI | MR | Zbl

[35] Clapp M., Puppe D., “Critical point theory with symmetries”, J. reine angew Math., 418 (1991), 1–29 | MR | Zbl

[36] Conner P. E., Floyd E. E., “Fixed point free involutions and equivariant maps”, Bull. Amer. Math. Soc., 66 (1960), 416–441 | DOI | MR | Zbl

[37] Conner P. E., Floyd E. E., “Fixed point free involutions and equivariant maps, II”, Trans. Amer. Math. Soc., 105 (1962), 222–228 | DOI | MR | Zbl

[38] Conner P. E., Floyd E. E., Differentiable periodic maps, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1964 | MR | Zbl

[39] Cohen F., Lusk E. L., “Coincidence point results for spaces with free $\mathbb Z_p$-actions”, Proc. Amer. Math. Soc., 49:1 (1975), 245–252 | DOI | MR | Zbl

[40] Cohen F., Lusk E. L., “Configuration-like spaces and the Borsuk–Ulam theorem”, Proc. Amer. Math. Soc., 56 (1976), 313–317 | DOI | MR | Zbl

[41] Tom Dieck T., Transformation groups, Walter de Gruyter, Berlin–N. Y., 1987 | MR | Zbl

[42] Fadell E., Husseini S., “An ideal-valued cohomological index theory with applications to Borsuk–Ulam and Bourgin–Yang theorems”, Ergodic theory and dynamic systems, 8, Spec. Issue (1988), 259–268 | MR

[43] Flores A., “Über $n$-dimensionale Komplexe die im $R_{2n+1}$ absolut selbstverschlungen sind”, Ergegb. Math. Kolloq., 6 (1933/34), 4–7

[44] Goncalves D. L., Pergher P. Q. L., “$\mathbb Z_p$-coincidences for maps of spheres into CW complexes”, Kobe J. Math., 15:1 (1998), 191–195 | MR | Zbl

[45] Goncalves D. L., Jaworowski J., Pergher P. Q. L., “G-coincidences for maps of homotopy spheres into CW complexes”, Proc. Amer. Math. Soc., 130:10 (2002), 3111–3115 | DOI | MR | Zbl

[46] Goncalves D. L., Jaworowski J., Pergher P. Q. L., “Measuring the size of the coincidence set”, Topology Appl., 125:3 (2002), 465–470 | DOI | MR | Zbl

[47] Goncalves D. L., Jaworowski J., Pergher P. Q. L., Volovikov A. Yu., “Coincidences for maps of spaces with finite group actions”, Topology Appl., 145:1–3 (2004), 61–68 | DOI | MR | Zbl

[48] Hopf H., “Freie Überdeckungen und frei Abbildungen”, Fund. Math., 28 (1937), 33–57 | Zbl

[49] Hopf H., “Verallgemeinerung bekannter Abildungs- und Überdeckungssätze”, Port. Math., 4 (1943/44), 129–139 | MR

[50] Hsiang W. Y., Cohomological theory of topological transformation groups, Springer-Verlag, Berlin–Heidelberg–N. Y., 1975 | MR

[51] Izydorek M., Jaworowski J., “Antipodal coincidence for maps of spheres into complexes”, Proc. Amer. Math. Soc., 123 (1995), 1947–1950 | DOI | MR | Zbl

[52] Jaworowski J., “Periodic coincidence for maps of spheres”, Kobe J. Math., 17 (2000), 21–26 | MR | Zbl

[53] Kakutani S., “A proof that there exists a circumscribing cube around any bounded closed convex set in $\mathbb R^3$”, Ann. of Math. (2), 43 (1942), 739–741 | DOI | MR | Zbl

[54] Li C. Q., “On solutions of frame mappings into manifolds”, Lect. Notes in Math., 1411, 1989, 143–147 | MR

[55] Lusk E. L., “The mod $p$ Smith index and a generalized Borsuk–Ulam theorem”, Mich. Math. J., 22 (1975), 151–160 | DOI | MR | Zbl

[56] Matousek J., Using the Borsuk–Ulam Theorem. Lectures on Topological Methods in Combinatorics and Geometry, Springer-Verlag, Berlin–Heidelberg–N. Y., 2003 | MR

[57] Munkholm H. J., “On the Borsuk–Ulam theorem for $\mathbb Z_{p^\alpha}$ actions on $S^{2n-1}$ and maps $S^{2n-1}\to\mathbb R^m$”, Osaka J. Math., 7 (1970), 451–456 | MR | Zbl

[58] Scordev G. S., “On a theorem of H. Hopf”, Serdica. Bulg. math. publ., 1 (1975), 317–325 | MR

[59] Stefanov S. T., “Mapping theorems for $\mathbb Z_p$-actions with fixed points”, Serdica. Bulg. math. publ., 16 (1990), 87–93 | MR | Zbl

[60] Stefanov S. T., “Yang index of the deleted product”, Proc. Amer. Math. Soc., 128:3 (1999), 885–891 | DOI | MR

[61] Väisälä J., “A theorem of the Borsuk–Ulam type for maps into non-manifolds”, Topology, 20 (1981), 319–322 | DOI | MR

[62] Volovikov A., “Mappings of free $\mathbb Z_p$-spaces into manifolds”, Leningrad International Topological Conference. Abstracts, Nauka, Leningrad, 1982, 168 | MR

[63] Volovikov A., Dimension and C-essentiality of the set of $Z_p$-coincidences of map, Abstracts of the Second Soviet-Japanese Symposium on Dimension and related Topics. Preprint No 7, MIAN SSSR, 1989, p. 55

[64] Volovikov A., “Dimension and $C$-essentiality of $\mathbb Z_p$-coincidence set of map”, $Q$ $A$ in General Topology, 8, Spec. Issue (1990), 207–217 | MR | Zbl

[65] Wu W.-T., A theory of imbedding, immersion, and isotopy of polytopes in a Euclidean space, Science press, Peking, 1965 | MR

[66] Yamabe H., Yujobô Z., “On the continuous functions defined on a sphere”, Osaka Math. J., 2:1 (1950), 19–22 | MR | Zbl

[67] Yang C. T., “On theorems of Borsuk–Ulam, Kakutani–Yamabe–Yujobô and Dyson, I”, Ann. of Math., 60 (1954), 262–282 | DOI | MR | Zbl

[68] Yang C. T., “Continuous functions from spheres to Euclidean spaces”, Ann. of Math., 62:2 (1955), 284–292 | DOI | MR | Zbl

[69] Yang C. T., “On maps from spheres to Euclidean spaces”, Amer. J. Math., 79 (1957), 725–732 | DOI | MR | Zbl

[70] Z̆ivaljević R. T., “User's guide to equivariant methods in combinatorics”, Publications of the Institute of Mathematics. Belgrade, 59 (73) (1996), 114–130 | MR | Zbl