First-order invariants and cohomology of spaces of embeddings of self-intersecting curves in~$\mathbb R^n$
Izvestiya. Mathematics , Tome 69 (2005) no. 5, pp. 865-912.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the cohomology of the space of generic immersions $\mathbb R^1\to\mathbb R^n$, $n\geqslant3$, with a fixed set of transversal self-intersections. In particular, we study isotopy invariants of such immersions when $n=3$, calculate the lower cohomology groups of this space for $n>3$, and define and calculate the groups of first-order invariants of such immersions for $n=3$. We investigate the representability of these invariants by rational combinatorial formulae that generalize the classical formula for the linking number of two curves in $\mathbb R^3$. We prove the existence of such combinatorial formulae with half-integer coefficients and construct the topological obstruction to their integrality. As a corollary, it is proved that one of the basic 4th order knot invariants cannot be represented by an integral Polyak–Viro formula. The structure of the cohomology groups under investigation depends on the existence of a planar curve with a given self-intersection type. On the other hand, one can use the self-intersection type to construct automatically a chain complex calculating these cohomology groups. This gives a simple homological criterion for the existence of such a planar curve.
@article{IM2_2005_69_5_a0,
     author = {V. A. Vassiliev},
     title = {First-order invariants and cohomology of spaces of embeddings of self-intersecting curves in~$\mathbb R^n$},
     journal = {Izvestiya. Mathematics },
     pages = {865--912},
     publisher = {mathdoc},
     volume = {69},
     number = {5},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_5_a0/}
}
TY  - JOUR
AU  - V. A. Vassiliev
TI  - First-order invariants and cohomology of spaces of embeddings of self-intersecting curves in~$\mathbb R^n$
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 865
EP  - 912
VL  - 69
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_5_a0/
LA  - en
ID  - IM2_2005_69_5_a0
ER  - 
%0 Journal Article
%A V. A. Vassiliev
%T First-order invariants and cohomology of spaces of embeddings of self-intersecting curves in~$\mathbb R^n$
%J Izvestiya. Mathematics 
%D 2005
%P 865-912
%V 69
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_5_a0/
%G en
%F IM2_2005_69_5_a0
V. A. Vassiliev. First-order invariants and cohomology of spaces of embeddings of self-intersecting curves in~$\mathbb R^n$. Izvestiya. Mathematics , Tome 69 (2005) no. 5, pp. 865-912. http://geodesic.mathdoc.fr/item/IM2_2005_69_5_a0/

[1] Arnold V. I., “O nekotorykh topologicheskikh invariantakh algebraicheskikh funktsii”, Tr. MMO, 21, URSS, M., 1970, 27–46 | MR

[2] Arnold V. I., “Plane curves, their invariants, perestroikas and classifications”, Singularities and Bifurcations, Adv. in Sov. Math., 21, AMS, Providence, 1994, 33–91 | MR

[3] Bar-Natan D., “On the Vassiliev knot invariants”, Topology, 34 (1995), 423–472 | DOI | MR | Zbl

[4] Birman J., “New points of view in knot theory”, Bull. AMS (N. S. ), 28:3 (1993), 253–287 | DOI | MR | Zbl

[5] Cairns G., Elton D., “The planarity problem for signed Gauss words”, J. of Knot Theory and Its Ramifications, 2:4 (1993), 359–367 ; 5:2 (1996), 137–144 | DOI | MR | Zbl | DOI | MR | Zbl

[6] Chmutov S. V., Duzhin S. V., Lando S. K., “Vassiliev knot invariants. II: Intersection graph conjecture for trees”, Singularities and Bifurcations, Adv. in Sov. Math., 21, AMS, Providence, 1994, 127–134 | MR

[7] Goussarov M., Polyak M., Viro O., “Finite type invariants of classical and virtual knots”, Topology, 39:5 (2000), 1045–1068 | DOI | MR | Zbl

[8] Kauffman L. H., “Virtual Knot Theory”, European J. of Combinatorics, 20:7 (1999), 662–690 | MR

[9] Lovász L., Marx M., “A forbidden substructure characterization of Gauss codes”, Acta Sci. Math. (Szeged), 38:1–2 (1976), 115–119 | MR | Zbl

[10] Manturov V. O., “Dokazatelstvo gipotezy V. A. Vasileva o planarnosti singulyarnykh zatseplenii”, Izv. RAN. Ser. matem., 69:5 (2005), 169–178 | MR | Zbl

[11] Polyak M., Viro O., “Gauss diagram formulas for Vassiliev invariants”, Internat. Math. Res. Notes, 11 (1994), 445–453 | DOI | MR | Zbl

[12] Sarkaria K. S., “A one-dimensional Whitney trick and Kuratowski's graph planarity criterion”, Israel J. Math., 73 (1991), 79–89 | DOI | MR | Zbl

[13] Stanford T., “Finite type invariants of knots, links, and graphs”, Topology, 35:4 (1996), 1027–1050 | DOI | MR | Zbl

[14] Tyurina S. D., “O formulakh tipa Lanna i Viro–Polyaka dlya invariantov konechnogo tipa”, Matem. zametki, 66:4 (1999), 635–640 | MR

[15] Vassiliev V. A., “Cohomology of knot spaces”, Theory of Singularities and its Applications, Adv. in Sov. Math., 1, ed. V. I. Arnold, AMS, Providence, 1990, 23–69 | MR

[16] Vassiliev V. A., Complements of discriminants of smooth maps: topology and applications, Translations of Math. Monographs, 98, AMS, Providence, 1994 | MR

[17] Vasilev V. A., Topologiya dopolnenii k diskriminantam, Fazis, M., 1997 | MR

[18] Vassiliev V. A., “Topological order complexes and resolutions of discriminant sets”, Publications de l'Institut Mathématique Belgrade. Nouvelle série, 66 (80) (1999), 165–185 | MR | Zbl

[19] Vassiliev V. A., “On combinatorial formulas for cohomology of spaces of knots”, Moscow Math. J., 1:1 (2001), 91–123 | MR | Zbl

[20] Vassiliev V. A., “Combinatorial formulas for cohomology of spaces of knots”, Advances in Topological Quantum Field Theory, ed. J. Bryden, Springer-Verlag, N.Y., 2004 | MR | Zbl

[21] Vasilev V. A., “Kombinatornoe vychislenie kombinatornykh formul dlya invariantov uzlov”, Tr. MMO, 66, URSS, M., 2005, 3–94 | MR