Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2005_69_5_a0, author = {V. A. Vassiliev}, title = {First-order invariants and cohomology of spaces of embeddings of self-intersecting curves in~$\mathbb R^n$}, journal = {Izvestiya. Mathematics }, pages = {865--912}, publisher = {mathdoc}, volume = {69}, number = {5}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_5_a0/} }
TY - JOUR AU - V. A. Vassiliev TI - First-order invariants and cohomology of spaces of embeddings of self-intersecting curves in~$\mathbb R^n$ JO - Izvestiya. Mathematics PY - 2005 SP - 865 EP - 912 VL - 69 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2005_69_5_a0/ LA - en ID - IM2_2005_69_5_a0 ER -
V. A. Vassiliev. First-order invariants and cohomology of spaces of embeddings of self-intersecting curves in~$\mathbb R^n$. Izvestiya. Mathematics , Tome 69 (2005) no. 5, pp. 865-912. http://geodesic.mathdoc.fr/item/IM2_2005_69_5_a0/
[1] Arnold V. I., “O nekotorykh topologicheskikh invariantakh algebraicheskikh funktsii”, Tr. MMO, 21, URSS, M., 1970, 27–46 | MR
[2] Arnold V. I., “Plane curves, their invariants, perestroikas and classifications”, Singularities and Bifurcations, Adv. in Sov. Math., 21, AMS, Providence, 1994, 33–91 | MR
[3] Bar-Natan D., “On the Vassiliev knot invariants”, Topology, 34 (1995), 423–472 | DOI | MR | Zbl
[4] Birman J., “New points of view in knot theory”, Bull. AMS (N. S. ), 28:3 (1993), 253–287 | DOI | MR | Zbl
[5] Cairns G., Elton D., “The planarity problem for signed Gauss words”, J. of Knot Theory and Its Ramifications, 2:4 (1993), 359–367 ; 5:2 (1996), 137–144 | DOI | MR | Zbl | DOI | MR | Zbl
[6] Chmutov S. V., Duzhin S. V., Lando S. K., “Vassiliev knot invariants. II: Intersection graph conjecture for trees”, Singularities and Bifurcations, Adv. in Sov. Math., 21, AMS, Providence, 1994, 127–134 | MR
[7] Goussarov M., Polyak M., Viro O., “Finite type invariants of classical and virtual knots”, Topology, 39:5 (2000), 1045–1068 | DOI | MR | Zbl
[8] Kauffman L. H., “Virtual Knot Theory”, European J. of Combinatorics, 20:7 (1999), 662–690 | MR
[9] Lovász L., Marx M., “A forbidden substructure characterization of Gauss codes”, Acta Sci. Math. (Szeged), 38:1–2 (1976), 115–119 | MR | Zbl
[10] Manturov V. O., “Dokazatelstvo gipotezy V. A. Vasileva o planarnosti singulyarnykh zatseplenii”, Izv. RAN. Ser. matem., 69:5 (2005), 169–178 | MR | Zbl
[11] Polyak M., Viro O., “Gauss diagram formulas for Vassiliev invariants”, Internat. Math. Res. Notes, 11 (1994), 445–453 | DOI | MR | Zbl
[12] Sarkaria K. S., “A one-dimensional Whitney trick and Kuratowski's graph planarity criterion”, Israel J. Math., 73 (1991), 79–89 | DOI | MR | Zbl
[13] Stanford T., “Finite type invariants of knots, links, and graphs”, Topology, 35:4 (1996), 1027–1050 | DOI | MR | Zbl
[14] Tyurina S. D., “O formulakh tipa Lanna i Viro–Polyaka dlya invariantov konechnogo tipa”, Matem. zametki, 66:4 (1999), 635–640 | MR
[15] Vassiliev V. A., “Cohomology of knot spaces”, Theory of Singularities and its Applications, Adv. in Sov. Math., 1, ed. V. I. Arnold, AMS, Providence, 1990, 23–69 | MR
[16] Vassiliev V. A., Complements of discriminants of smooth maps: topology and applications, Translations of Math. Monographs, 98, AMS, Providence, 1994 | MR
[17] Vasilev V. A., Topologiya dopolnenii k diskriminantam, Fazis, M., 1997 | MR
[18] Vassiliev V. A., “Topological order complexes and resolutions of discriminant sets”, Publications de l'Institut Mathématique Belgrade. Nouvelle série, 66 (80) (1999), 165–185 | MR | Zbl
[19] Vassiliev V. A., “On combinatorial formulas for cohomology of spaces of knots”, Moscow Math. J., 1:1 (2001), 91–123 | MR | Zbl
[20] Vassiliev V. A., “Combinatorial formulas for cohomology of spaces of knots”, Advances in Topological Quantum Field Theory, ed. J. Bryden, Springer-Verlag, N.Y., 2004 | MR | Zbl
[21] Vasilev V. A., “Kombinatornoe vychislenie kombinatornykh formul dlya invariantov uzlov”, Tr. MMO, 66, URSS, M., 2005, 3–94 | MR