Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2005_69_4_a5, author = {D. V. Poryvai}, title = {The invariance principle for~conditional empirical processes}, journal = {Izvestiya. Mathematics }, pages = {771--789}, publisher = {mathdoc}, volume = {69}, number = {4}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a5/} }
D. V. Poryvai. The invariance principle for~conditional empirical processes. Izvestiya. Mathematics , Tome 69 (2005) no. 4, pp. 771-789. http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a5/
[1] Alexander K. S., “Probability inequalities for empirical processes and law of the iterated logarithm”, Annals of Probability, 12:4 (1984), 1041–1067 | DOI | MR | Zbl
[2] Bosq D., Nonparametric Statistics for Stochastics Processes, Lecture Notes in Statistics, 110, Springer-Verlag, N. Y., 1998 | MR | Zbl
[3] Dedecker J., “Exponential inequalities and functional central limit theorems for random fields”, ESAIM: Probab. Statist., 2001, no. 5, 77–104 | DOI | MR | Zbl
[4] Dedecker J., Rio E., “On the functional central limit theorem for stationary processes”, Annales de l'Institut Henri Poincaré Probabilitiés et Statistiques, 2000, no. 36, 1–34 | DOI | MR | Zbl
[5] Doukhan P., Mixing. Properties and Examples, Lecture Notes in Statistics, 85, Springer-Verlag, N. Y., 1994 | MR | Zbl
[6] Doukhan P., Massart P., Rio E., “Invariance principles for absolutely regular empirical processes”, Annales de l'Institut Henri Poincaré Probabilitiés et Statistiques, 1995, no. 31, 393–427 | MR | Zbl
[7] Fan J., Truong Y. K., “Nonparametric regression with errors in variables”, Ann. Statist., 1993, no. 21, 1900–1925 | DOI | MR | Zbl
[8] Franke J., Härdle W., Kreiss J.-P., Mercurio D., “Nonparametric Estimation in a Stochastic Volatility Model”, Recent Advances and Trends in Nonparametric Statistics, eds. M. G. Akritas, D. N. Politis, Elsevier, 2003, 303–312
[9] Parzen E., “On estimation of a probability density function and mode”, Ann. Math. Statist., 1962, no. 33, 1065–1076 | DOI | MR | Zbl
[10] Polonik W., Yao Q., “Set-indexed conditional empirical and quantile processes based on dependent data”, J. Multivar. Anal., 2002, no. 80, 234–255 | DOI | MR | Zbl
[11] Scott L. O., “Option pricing when the variance changes randomly: Theory, Estimation and Application”, J. Financial Quant. Anal., 1987, no. 22, 419–438 | DOI
[12] Taylor S. J., “Modelling Stochastic Volatility: A Review and Comparative Study”, Math. Finance, 1994, no. 4, 183–204 | DOI | Zbl
[13] Tuyen D. Q., “Central Limit Theorems for Mixing Arrays”, Vietnam Journal of Mathematics (to appear)
[14] Ziegler K., “On the asymptotic normality of kernel regression estimators of the mode in the nonparametric random design model”, J. Statist. Plann. Inf., 2003, no. 115, 123–144 | DOI | MR | Zbl