Connectedness of suns in the space~$c_0$
Izvestiya. Mathematics , Tome 69 (2005) no. 4, pp. 651-666

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the question of the connectedness of suns in the space $c_0$. We show that any sun $M$ in $c_0$ is m-connected (in the sense of Brown). It follows that $M$ is monotonically path-connected and the intersection of $M$ with an arbitrary ball in $c_0$ is monotonically path-connected (and, in particular, path-connected). On the other hand, we establish that every approximatively compact m-connected set in $c_0$ is a sun in $c_0$. For $X=c_0$, $c$ or $\ell^\infty$, it is proved that the intersection of a sun in $X$ with a finite-dimensional coordinate subspace $H_n\subset X$ is a $P$-acyclic sun in $H_n$.
@article{IM2_2005_69_4_a0,
     author = {A. R. Alimov},
     title = {Connectedness of suns in the space~$c_0$},
     journal = {Izvestiya. Mathematics },
     pages = {651--666},
     publisher = {mathdoc},
     volume = {69},
     number = {4},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a0/}
}
TY  - JOUR
AU  - A. R. Alimov
TI  - Connectedness of suns in the space~$c_0$
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 651
EP  - 666
VL  - 69
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a0/
LA  - en
ID  - IM2_2005_69_4_a0
ER  - 
%0 Journal Article
%A A. R. Alimov
%T Connectedness of suns in the space~$c_0$
%J Izvestiya. Mathematics 
%D 2005
%P 651-666
%V 69
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a0/
%G en
%F IM2_2005_69_4_a0
A. R. Alimov. Connectedness of suns in the space~$c_0$. Izvestiya. Mathematics , Tome 69 (2005) no. 4, pp. 651-666. http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a0/