Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2005_69_4_a0, author = {A. R. Alimov}, title = {Connectedness of suns in the space~$c_0$}, journal = {Izvestiya. Mathematics }, pages = {651--666}, publisher = {mathdoc}, volume = {69}, number = {4}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a0/} }
A. R. Alimov. Connectedness of suns in the space~$c_0$. Izvestiya. Mathematics , Tome 69 (2005) no. 4, pp. 651-666. http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a0/
[1] Brown A. L., “Suns in normed linear spaces which are finite-dimensional”, Math. Ann., 279 (1987), 87–101 | DOI | MR | Zbl
[2] Brown A. L., “On the connectedness properties of suns in finite dimensional spaces”, Proc. Cent. Math. Anal. Aust. Natl. Univ., 20 (1988), 1–15 | MR | Zbl
[3] Brown A. L., “Suns in polyhedral spaces”, Seminar of Math. Analysis. Proceedings. Univ. Malaga and Seville (Spain), Sept. 2002 – Feb. 2003, eds. D. G. Álvarez, G. Lopez Acedo, R. V. Caro, Universidad de Sevilla, Sevilla, 2003, 139–146 | MR | Zbl
[4] Braess D., “Geometrical characterizations for nonlinear uniform approximation”, J. Approx. Theory, 11 (1974), 260–274 | DOI | MR | Zbl
[5] Berens H., Hetzelt L., “Die Metrische Struktur der Sonnen in $\ell^\infty(n)$”, Aequat. Math., 27 (1984), 274–287 | DOI | MR | Zbl
[6] Alimov A. R., “Geometricheskaya kharakterizatsiya strogikh solnts v $\ell^\infty(n)$”, Matem. zametki, 70:1 (2001), 3–11 | MR | Zbl
[7] Franchetti C., Roversi S., Suns, $M$-connected sets and $P$-acyclic sets in Banch spaces, Preprint No 50139, Instituto di Matematica Applicata “G. Sansone”, 1988, p. 1–29 | MR
[8] Alimov A. R., “Geometricheskoe stroenie chebyshevskikh mnozhestv v $\ell^\infty(n)$”, Funktsion. analiz i ego prilozh., 38:1 (2005), 1–10 | MR
[9] Alimov A. R., “Characterisations of Chebyshev Sets in $c_0$”, J. Approx. Theory, 129:2 (2004), 217–229 | DOI | MR | Zbl
[10] Stechkin S. B., Izbrannye trudy. Matematika, Nauka, M., 1998 | MR
[11] Vlasov L. P., “Approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, UMN, 28:6 (1973), 3–66 | MR | Zbl
[12] Balaganskii V. S., Vlasov L. P., “Problema vypuklosti chebyshevskikh mnozhestv”, UMN, 51:6(312) (1996), 125–188 | MR | Zbl
[13] Karlov M. I., Tsarkov I. G., “Vypuklost i svyaznost chebyshevskikh mnozhestv i solnts”, Fundam. i prikl. matem., 3:4 (1997), 967–978 | MR | Zbl
[14] Vlasov L. P., “Ponyatie approksimativnoi kompaktnosti i ego varianty”, Matem. zametki, 16:2 (1974), 337–348 | MR | Zbl
[15] Kenderov P. S., Giles J. R., “On the structure of Banach spaces with Mazur's intersection property”, Math. Ann., 291:3 (1991), 463–474 | DOI | MR | Zbl
[16] Whitfield J. H. M., Zizler V., “Mazur's intersection property of balls for compact convex sets”, Bull. Aust. Math. Soc., 35 (1987), 267–274 | DOI | MR | Zbl
[17] Köthe G., Topological vector spaces, V. I, Springer-Verlag, Berlin, 1969 | MR | Zbl
[18] Menger K., “Untersuchungen über allgemeine Metrik”, Math. Ann., 100 (1928), 75–163 | DOI | MR | Zbl
[19] Gordeo-Erasquin D., McCann R. J., Schmuckenschläger M., “A Riemannian interpolation inequality à la Borell, Brascamp and Lieb”, Invent. Math., 146 (2001), 219–257 | DOI | MR
[20] Vlasov L. P., “Chebyshevskie mnozhestva i nekotorye ikh obobscheniya”, Matem. zametki, 3:1 (1968), 59–69 | MR | Zbl
[21] Koscheev V. A., “Svyaznost i approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, Matem. zametki, 17:2 (1975), 193–204 | MR | Zbl
[22] Koscheev V. A., “Svyaznost i solnechnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, Matem. zametki, 19:2 (1976), 267–278 | MR | Zbl
[23] Koscheev V. A., “Primer nesvyaznogo solntsa v banakhovom prostranstve”, Matem. zametki, 26:1 (1979), 89–92 | MR | Zbl
[24] Brown A. L., “Chebyshev sets and the shapes of convex bodies”, Methods of Functional Analysis in Approximation Theory, Internat. Series of Numerical Math., 76, ed. C. A. Micchelli, Birkhäuser-Verlag, Basel, 1986, 97–121 | MR