Orthogonal wavelets with compact support on locally compact Abelian groups
Izvestiya. Mathematics , Tome 69 (2005) no. 3, pp. 623-650.

Voir la notice de l'article provenant de la source Math-Net.Ru

We extend and improve the results of W. Lang (1998) on the wavelet analysis on the Cantor dyadic group $\mathcal C$. Our construction is realized on a locally compact abelian group $G$ which is defined for an integer $p\geqslant2$ and coincides with $\mathcal C$ when $p=2$. For any integers $p,n\geqslant 2$ we determine a function $\varphi$ in $L^2(G)$ which is the sum of a lacunary series by generalized Walsh functions, has orthonormal “integer” shifts in $L^2(G)$, satisfies “the scaling equation” with $p^n$ numerical coefficients, has compact support whose Haar measure is proportional to $p^n$, generates a multiresolution analysis in $L^2(G)$. Orthogonal wavelets $\psi$ with compact supports on $G$ are defined by such functions $\varphi$. The family of these functions $\varphi$ is in many respects analogous to the well-known family of Daubechies' scaling functions. We give a method for estimating the moduli of continuity of the functions $\varphi$, which leads to sharp estimates for small $p$ and $n$. We also show that the notion of adapted multiresolution analysis recently suggested by Sendov is applicable in this situation.
@article{IM2_2005_69_3_a5,
     author = {Yu. A. Farkov},
     title = {Orthogonal wavelets with compact support on locally compact {Abelian} groups},
     journal = {Izvestiya. Mathematics },
     pages = {623--650},
     publisher = {mathdoc},
     volume = {69},
     number = {3},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_3_a5/}
}
TY  - JOUR
AU  - Yu. A. Farkov
TI  - Orthogonal wavelets with compact support on locally compact Abelian groups
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 623
EP  - 650
VL  - 69
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_3_a5/
LA  - en
ID  - IM2_2005_69_3_a5
ER  - 
%0 Journal Article
%A Yu. A. Farkov
%T Orthogonal wavelets with compact support on locally compact Abelian groups
%J Izvestiya. Mathematics 
%D 2005
%P 623-650
%V 69
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_3_a5/
%G en
%F IM2_2005_69_3_a5
Yu. A. Farkov. Orthogonal wavelets with compact support on locally compact Abelian groups. Izvestiya. Mathematics , Tome 69 (2005) no. 3, pp. 623-650. http://geodesic.mathdoc.fr/item/IM2_2005_69_3_a5/

[1] Dobeshi I., Desyat lektsii po veivletam, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2001

[2] Holshneider M., Wavelets: an analysis tool, Clarendon Press, Oxford, 1995 | MR

[3] Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz, T. 1, Nauka, M., 1975

[4] Jia R. Q., Shen Z., “Multiresolution and wavelets”, Proc. Edinburg Math. Soc., 37 (1994), 271–300 | DOI | MR | Zbl

[5] Gröchenig K., Madych W. R., “Multiresolution analysis, Haar bases, and self-similar tiling of $\mathbb R^n$”, IEEE Trans. Inform. Theory, 38 (1992), 556–568 | DOI | MR | Zbl

[6] Speegle D., “On the existence of wavelets for non-expansive dilation matrices”, Collect. Math., 54 (2003), 163–179 | MR | Zbl

[7] Dahlke S., “Multiresolution analysis and wavelets on locally compact abelian groups”, Wavelets, Images, and Surface Fitting, eds. P. J. Laurent, A. Le Méhauté, L. L. Schumaker, AK Peters, Wellesley, Massachusetts, 1994, 141–156 | MR | Zbl

[8] Farkov Yu. A., “Ortogonalnye vspleski na lokalno kompaktnykh abelevykh gruppakh”, Funktsion. analiz i ego prilozh., 31:4 (1997), 86–88 | MR | Zbl

[9] Kozyrev S. V., “Teoriya vspleskov kak $p$-adicheskii spektralnyi analiz”, Izv. RAN. Ser. matem., 66:2 (2002), 149–158 | MR | Zbl

[10] Lang W. C., “Wavelet analysis on the Cantor dyadic group”, Houston J. Math., 24 (1998), 533–544 | MR | Zbl

[11] Lemarié P. G., “Bases d'ondelettes sur les groupes de Lie stratifiés”, Bull. Math. Soc. France, 117 (1989), 211–232 | MR | Zbl

[12] Ragunatan M., Diskretnye podgruppy grupp Li, Mir, M., 1977 | MR

[13] Pontryagin L. S., Nepreryvnye gruppy, Nauka, M., 1984 | MR

[14] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha: Teoriya i primeneniya, Nauka, M., 1987 | MR | Zbl

[15] Schipp F., Wade W. R., Simon P., Walsh series: An introduction to dyadic harmonic analysis, Adam Hilger, N. Y., 1990 | MR | Zbl

[16] Edvards R., Ryady Fure v sovremennom izlozhenii, T. 2, Mir, M., 1985

[17] Farkov Yu. A., “Ob ortogonalnykh veivletakh na poluosi”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Tezisy dokladov 12-i Saratovskoi zimnei shkoly (Saratov, 27 yanvarya–3 fevralya 2004 goda), Izd-vo UNTs “Kolledzh”, Saratov, 2004, 187–188

[18] Malozemov V. N., Masharskii S. M., “Obobschennye veivletnye bazisy, svyazannye s diskretnym preobrazovaniem Vilenkina–Krestensona”, Algebra i analiz, 13 (2001), 111–157 | MR

[19] Sendov Bl., “Adapted multiresolution analysis”, Functions, series, operators, eds. L. Leindler, F. Schipp, J. Szabados, Budapest, 2002, 23–38 | MR | Zbl

[20] Bychkov S. A., Farkov Yu. A., “O teoreme Koena dlya veivlet-razlozhenii na gruppakh”, VI Mezhdunarodnaya konferentsiya “Novye idei v naukakh o Zemle”, Izbrannye doklady (Moskva, aprel 2003 g.), MGGRU, M., 2003, 226–233

[21] Tikhomirov V. M., “Teoriya priblizhenii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 14, VINITI AN SSSR, M., 1987, 103–260 | MR

[22] Wickerhauser M. V., Adapted Wavelet Analysis, AK Peters Ltd, Wellesley, MA, 1994 | MR | Zbl

[23] Rubinshtein A. I., “O modulyakh nepreryvnosti funktsii, opredelennykh na nulmernoi gruppe”, Matem. zametki, 23:3 (1978), 379–388 | MR

[24] Daubechies I., Lagarias J. C., “Two-scale difference equations. II: Local regularity, infinite products of matrices and fractals”, SIAM J. Math. Anal., 23 (1992), 1031–1078 | DOI | MR