Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2005_69_3_a5, author = {Yu. A. Farkov}, title = {Orthogonal wavelets with compact support on locally compact {Abelian} groups}, journal = {Izvestiya. Mathematics }, pages = {623--650}, publisher = {mathdoc}, volume = {69}, number = {3}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_3_a5/} }
Yu. A. Farkov. Orthogonal wavelets with compact support on locally compact Abelian groups. Izvestiya. Mathematics , Tome 69 (2005) no. 3, pp. 623-650. http://geodesic.mathdoc.fr/item/IM2_2005_69_3_a5/
[1] Dobeshi I., Desyat lektsii po veivletam, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2001
[2] Holshneider M., Wavelets: an analysis tool, Clarendon Press, Oxford, 1995 | MR
[3] Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz, T. 1, Nauka, M., 1975
[4] Jia R. Q., Shen Z., “Multiresolution and wavelets”, Proc. Edinburg Math. Soc., 37 (1994), 271–300 | DOI | MR | Zbl
[5] Gröchenig K., Madych W. R., “Multiresolution analysis, Haar bases, and self-similar tiling of $\mathbb R^n$”, IEEE Trans. Inform. Theory, 38 (1992), 556–568 | DOI | MR | Zbl
[6] Speegle D., “On the existence of wavelets for non-expansive dilation matrices”, Collect. Math., 54 (2003), 163–179 | MR | Zbl
[7] Dahlke S., “Multiresolution analysis and wavelets on locally compact abelian groups”, Wavelets, Images, and Surface Fitting, eds. P. J. Laurent, A. Le Méhauté, L. L. Schumaker, AK Peters, Wellesley, Massachusetts, 1994, 141–156 | MR | Zbl
[8] Farkov Yu. A., “Ortogonalnye vspleski na lokalno kompaktnykh abelevykh gruppakh”, Funktsion. analiz i ego prilozh., 31:4 (1997), 86–88 | MR | Zbl
[9] Kozyrev S. V., “Teoriya vspleskov kak $p$-adicheskii spektralnyi analiz”, Izv. RAN. Ser. matem., 66:2 (2002), 149–158 | MR | Zbl
[10] Lang W. C., “Wavelet analysis on the Cantor dyadic group”, Houston J. Math., 24 (1998), 533–544 | MR | Zbl
[11] Lemarié P. G., “Bases d'ondelettes sur les groupes de Lie stratifiés”, Bull. Math. Soc. France, 117 (1989), 211–232 | MR | Zbl
[12] Ragunatan M., Diskretnye podgruppy grupp Li, Mir, M., 1977 | MR
[13] Pontryagin L. S., Nepreryvnye gruppy, Nauka, M., 1984 | MR
[14] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha: Teoriya i primeneniya, Nauka, M., 1987 | MR | Zbl
[15] Schipp F., Wade W. R., Simon P., Walsh series: An introduction to dyadic harmonic analysis, Adam Hilger, N. Y., 1990 | MR | Zbl
[16] Edvards R., Ryady Fure v sovremennom izlozhenii, T. 2, Mir, M., 1985
[17] Farkov Yu. A., “Ob ortogonalnykh veivletakh na poluosi”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Tezisy dokladov 12-i Saratovskoi zimnei shkoly (Saratov, 27 yanvarya–3 fevralya 2004 goda), Izd-vo UNTs “Kolledzh”, Saratov, 2004, 187–188
[18] Malozemov V. N., Masharskii S. M., “Obobschennye veivletnye bazisy, svyazannye s diskretnym preobrazovaniem Vilenkina–Krestensona”, Algebra i analiz, 13 (2001), 111–157 | MR
[19] Sendov Bl., “Adapted multiresolution analysis”, Functions, series, operators, eds. L. Leindler, F. Schipp, J. Szabados, Budapest, 2002, 23–38 | MR | Zbl
[20] Bychkov S. A., Farkov Yu. A., “O teoreme Koena dlya veivlet-razlozhenii na gruppakh”, VI Mezhdunarodnaya konferentsiya “Novye idei v naukakh o Zemle”, Izbrannye doklady (Moskva, aprel 2003 g.), MGGRU, M., 2003, 226–233
[21] Tikhomirov V. M., “Teoriya priblizhenii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 14, VINITI AN SSSR, M., 1987, 103–260 | MR
[22] Wickerhauser M. V., Adapted Wavelet Analysis, AK Peters Ltd, Wellesley, MA, 1994 | MR | Zbl
[23] Rubinshtein A. I., “O modulyakh nepreryvnosti funktsii, opredelennykh na nulmernoi gruppe”, Matem. zametki, 23:3 (1978), 379–388 | MR
[24] Daubechies I., Lagarias J. C., “Two-scale difference equations. II: Local regularity, infinite products of matrices and fractals”, SIAM J. Math. Anal., 23 (1992), 1031–1078 | DOI | MR