On the Brauer group of an algebraic variety over a finite field
Izvestiya. Mathematics , Tome 69 (2005) no. 2, pp. 331-343
Voir la notice de l'article provenant de la source Math-Net.Ru
For an arithmetic model $X\to C$ of a smooth regular projective
variety $V$ over a global field $k$ of positive characteristic, we prove the
finiteness of the $l$-primary component of the group $\operatorname{Br}'(X)$
under the conditions that $l$ does not divide the order of the
torsion group $\bigl[\operatorname{NS}(V)\bigr]_{\text{tors}}$ and the Tate
conjecture on divisorial cohomology classes is true for $V$.
@article{IM2_2005_69_2_a2,
author = {T. V. Zasorina},
title = {On the {Brauer} group of an algebraic variety over a finite field},
journal = {Izvestiya. Mathematics },
pages = {331--343},
publisher = {mathdoc},
volume = {69},
number = {2},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_2_a2/}
}
T. V. Zasorina. On the Brauer group of an algebraic variety over a finite field. Izvestiya. Mathematics , Tome 69 (2005) no. 2, pp. 331-343. http://geodesic.mathdoc.fr/item/IM2_2005_69_2_a2/