On the Brauer group of an algebraic variety over a finite field
Izvestiya. Mathematics , Tome 69 (2005) no. 2, pp. 331-343.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an arithmetic model $X\to C$ of a smooth regular projective variety $V$ over a global field $k$ of positive characteristic, we prove the finiteness of the $l$-primary component of the group $\operatorname{Br}'(X)$ under the conditions that $l$ does not divide the order of the torsion group $\bigl[\operatorname{NS}(V)\bigr]_{\text{tors}}$ and the Tate conjecture on divisorial cohomology classes is true for $V$.
@article{IM2_2005_69_2_a2,
     author = {T. V. Zasorina},
     title = {On the {Brauer} group of an algebraic variety over a finite field},
     journal = {Izvestiya. Mathematics },
     pages = {331--343},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_2_a2/}
}
TY  - JOUR
AU  - T. V. Zasorina
TI  - On the Brauer group of an algebraic variety over a finite field
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 331
EP  - 343
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_2_a2/
LA  - en
ID  - IM2_2005_69_2_a2
ER  - 
%0 Journal Article
%A T. V. Zasorina
%T On the Brauer group of an algebraic variety over a finite field
%J Izvestiya. Mathematics 
%D 2005
%P 331-343
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_2_a2/
%G en
%F IM2_2005_69_2_a2
T. V. Zasorina. On the Brauer group of an algebraic variety over a finite field. Izvestiya. Mathematics , Tome 69 (2005) no. 2, pp. 331-343. http://geodesic.mathdoc.fr/item/IM2_2005_69_2_a2/

[1] Atya M., Makdonald I., Vvedenie v kommutativnuyu algebru, Mir, M., 1972 | MR

[2] Kassels Dzh., Frelikh A., Algebraicheskaya teoriya chisel, Mir, M., 1969

[3] Fuks L., Beskonechnye abelevy gruppy, T. I, Mir, M., 1974

[4] Grothendieck A., “Eléments de géom\' etrie algébrique, IV: Étude locale des schémas et des morphismes des schémas”, Publ. Math. IHES, 32 (1967), 5–328

[5] Khartskhorn R., Algebraicheskaya geometriya, Mir, M., 1981 | MR | Zbl

[6] Kokh Kh., Teoriya Galua $p$-rasshirenii, Mir, M., 1973 | MR

[7] Miln Dzh., Etalnye kogomologii, Mir, M., 1983 | MR | Zbl

[8] Mamford D., Lektsii o krivykh na algebraicheskoi poverkhnosti, Mir, M., 1968

[9] Tankeev S. G., “O gruppe Brauera”, Izv. RAN. Ser. matem., 64:4 (2000), 141–162 | MR | Zbl

[10] Tankeev S. G., “O gruppe Brauera arifmeticheskoi skhemy”, Izv. RAN. Ser. matem., 65:2 (2001), 155–186 | MR | Zbl

[11] Tankeev S. G., “O gruppe Brauera arifmeticheskoi skhemy, II”, Izv. RAN. Ser. matem., 67:5 (2003), 155–176 | MR | Zbl

[12] Tate J., “Algebraic cycles and poles of zeta functions”, Arithmetical Algebraic Geometry, Harper and Row, N. Y., 1965, 93–110 | MR

[13] Teit Dzh., “O gipoteze Bercha i Svinnerton–Daiera i ikh geometricheskom analoge”, Matematika, 12:6 (1968), 41–55

[14] Tate J., “Conjectures on algebraic cycles in $l$-adic cohomology”, Proc. Symposia in Pure Math. Part. 1, 55 (1994), 71–83 | MR | Zbl