On the eigenvalues of a ``dumb-bell with a thin handle''
Izvestiya. Mathematics , Tome 69 (2005) no. 2, pp. 265-329.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Neumann boundary-value problem of finding the small-parameter asymptotics of the eigenvalues and eigenfunctions for the Laplace operator in a singularly perturbed domain consisting of two bounded domains joined by a thin “handle”. The small parameter is the diameter of the cross-section of the handle. We show that as the small parameter tends to zero these eigenvalues converge either to the eigenvalues corresponding to the domains joined or to the eigenvalues of the Dirichlet problem for the Sturm–Liouville operator on the segment to which the thin handle contracts. The main results of this paper are the complete power small-parameter asymptotics of the eigenvalues and the corresponding eigenfunctions and explicit formulae for the first terms of the asymptotics. We consider critical cases generated by the choice of the place where the thin “handle” is joined to the domains, as well as by the multiplicity of the eigenvalues corresponding to the domains joined.
@article{IM2_2005_69_2_a1,
     author = {R. R. Gadyl'shin},
     title = {On the eigenvalues of a ``dumb-bell with a thin handle''},
     journal = {Izvestiya. Mathematics },
     pages = {265--329},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_2_a1/}
}
TY  - JOUR
AU  - R. R. Gadyl'shin
TI  - On the eigenvalues of a ``dumb-bell with a thin handle''
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 265
EP  - 329
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_2_a1/
LA  - en
ID  - IM2_2005_69_2_a1
ER  - 
%0 Journal Article
%A R. R. Gadyl'shin
%T On the eigenvalues of a ``dumb-bell with a thin handle''
%J Izvestiya. Mathematics 
%D 2005
%P 265-329
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_2_a1/
%G en
%F IM2_2005_69_2_a1
R. R. Gadyl'shin. On the eigenvalues of a ``dumb-bell with a thin handle''. Izvestiya. Mathematics , Tome 69 (2005) no. 2, pp. 265-329. http://geodesic.mathdoc.fr/item/IM2_2005_69_2_a1/

[1] Beale J. T., “Scattering frequencies of resonators”, Commun. Pure and Appl. Math., 26:4 (1973), 549–563 | DOI | MR | Zbl

[2] Arsenev A. A., “O suschestvovanii rezonansnykh polyusov i rezonansov pri rasseyanii v sluchae kraevykh uslovii II i III roda”, ZhVM i MF, 16:3 (1976), 718–724 | MR

[3] Sanches-Palensia E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR

[4] Jimbo Sh., “The singularly perturbed domain and characterization for the eigenfunctions with Neumann boundary condition”, J. Differ. Equat., 77:2 (1989), 322–350 | DOI | MR | Zbl

[5] Fang Q., “Asymptotic behavior and domain-dependency of solutions to a class of reaction-diffusion systems with large diffusion coefficents”, Hiroshima Math. J., 20 (1990), 549–571 | MR | Zbl

[6] Hempel R., Seco L., Simon B., “The essential spectrum of Neumann Laplacians on some bounded singular domains”, J. Funct. Anal., 102 (1991), 448–483 | DOI | MR | Zbl

[7] Jimbo Sh., Morita Y., “Remarks on the behavior of sertain eigenvalues on a singularly perturbed domain with several thin channels”, Comm. Partial Differ. Equat., 17 (1992), 523–552 | MR | Zbl

[8] Hislop P. D., “Singular perturbations of Dirichlet and Neumann domains and resonances for obstacle scattering”, Astérisque, 210 (1992), 197–216 | MR | Zbl

[9] Gadylshin R. R., “Asimptotika vtoroi sobstvennoi chastoty dlya sistemy dvukh tel, soedinennykh tonkoi peremychkoi”, TMF, 97:1 (1993), 68–77 | MR

[10] Gadylshin R. R., “O sobstvennykh chastotakh tel s tonkimi otrostkami. I: Skhodimost i otsenki”, Matem. zametki, 54:6 (1993), 10–21 | MR

[11] Jimbo Sh., “Perturbation formula of eigenvalues in singularly perturbed domain”, J. Math. Soc. Japan, 45 (1993), 339–356 | DOI | MR | Zbl

[12] Gadylshin R. R., “O sobstvennykh chastotakh tel s tonkimi otrostkami. II: Asimptotiki”, Matem. zametki, 55:1 (1994), 20–34 | MR

[13] Kiselev A. A., Pavlov B. S., “Sobstvennye chastoty i sobstvennye funktsii operatora Laplasa zadachi Neimana v sisteme dvukh svyaznykh rezonatorov”, TMF, 100:3 (1994), 354–366 | MR | Zbl

[14] Brown R. M., Hislop P. D., Martinez A., “Eigenvalues and resonances for domains with tubes: Neumann boundary conditions”, J. Differ. Equat., 115 (1995), 458–476 | DOI | MR | Zbl

[15] Arrieta J. M., “Neumann eigenvalue problems on exterior perturbations of the domain”, J. Differ. Equat., 118 (1995), 54–103 | DOI | MR | Zbl

[16] Arrieta J. M., “Rates of eigenvalues on a dumbbel shaped domain. Simple eigenvalue case”, Trans. of the Amer. Math. Soc., 347:9 (1995), 3503–3531 | DOI | MR | Zbl

[17] Gadylshin R. R., “O sobstvennykh chastotakh tel s tonkimi otrostkami. III: Rasscheplenie chastot”, Matem. zametki, 61:4 (1997), 494–502 | MR

[18] Hawkins H., Parnovski L., Trapped modes in a waveguide with a thick obstacle, E-print math.AP/0111103

[19] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[20] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976 | MR | Zbl

[21] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo LGU, L., 1950

[22] Kurant R., Gilbert D., Metody matematicheskoi fiziki, Mir, M., 1951

[23] Morrey C. B., Multiple integrals in the calculus of variations, Springer-Verlag, Berlin, 1966 | MR | Zbl

[24] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[25] Gadylshin R. R., “O sobstvennykh znacheniyakh zadachi Neimana v oblasti s uzkim kanalom svyazi”, Dokl. RAN, 387:1 (2002), 26–30 | MR

[26] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[27] Nazarov S. A., “Soedinenie singulyarno vyrozhdayuschikhsya oblastei razlichnykh predelnykh razmernostei, I”, Tr. sem. im. I. G. Petrovskogo, 1995, no. 18, 3–78 | Zbl

[28] Babushka I., Vyborny R., “Continuous dependence of eigenvalues on the domains”, Czech. Mat. J., 15 (1965), 169–178 | MR

[29] Arsenev A. A., “Ob osobennostyakh analiticheskogo prodolzheniya i rezonansnykh svoistvakh resheniya zadachi rasseyaniya dlya uravneniya Gelmgoltsa”, ZhVM i MF, 12:1 (1971), 112–138 | MR

[30] Petras S. V., “O rasscheplenii serii rezonansov na “nefizicheskom liste””, Zapiski nauch. sem. LOMI, 51, Nauka, L., 1975, 155–169 | MR | Zbl

[31] Fernandez C., “Resonances in scattering by a resonator”, Indiana Univ. Math. J., 34 (1985), 115–125 | DOI | MR | Zbl

[32] Hislop P. D., Martinez A., “Scattering resonances of Helmholtz resonator”, Indiana Univ. Math. J., 40 (1991), 767–788 | DOI | MR | Zbl

[33] Brown R. M., Hislop P. D., Martinez A., “Lower bounds on the interaction between cavities connected by a thin tube”, Duke Math. J., 115 (1995), 458–476 | MR | Zbl

[34] Gadylshin R. R., “Asimptotika reshenii singulyarno vozmuschennoi zadachi Dirikhle”, ZhVM i MF, 36:1 (1996), 92–102 | MR

[35] Gadylshin R. R., “Metod soglasovaniya asimptoticheskikh razlozhenii v singulyarno vozmuschennoi kraevoi zadache dlya operatora Laplasa”, Itogi nauki i tekhniki. Sovr. matem. i ee prilozh. Tematicheskie obzory, 5, VINITI, M., 2003, 3–32

[36] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1971 | MR | Zbl

[37] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991

[38] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Asimptoticheskie razlozheniya sobstvennykh chisel kraevykh zadach dlya operatora Laplasa v oblastyakh s malymi otverstiyami”, Izv. AN SSSR. Ser. matem., 48:2 (1984), 347–371 | MR

[39] Planida M. Yu., “Asymptotics for eigenvalues of Laplacian with Neumann boundary condition on a thin tube cut out”, Comptes Rendus de l'Academie des Sciences. Ser. Mecanique, 331 (2003), 531–536