Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2005_69_2_a1, author = {R. R. Gadyl'shin}, title = {On the eigenvalues of a ``dumb-bell with a thin handle''}, journal = {Izvestiya. Mathematics }, pages = {265--329}, publisher = {mathdoc}, volume = {69}, number = {2}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_2_a1/} }
R. R. Gadyl'shin. On the eigenvalues of a ``dumb-bell with a thin handle''. Izvestiya. Mathematics , Tome 69 (2005) no. 2, pp. 265-329. http://geodesic.mathdoc.fr/item/IM2_2005_69_2_a1/
[1] Beale J. T., “Scattering frequencies of resonators”, Commun. Pure and Appl. Math., 26:4 (1973), 549–563 | DOI | MR | Zbl
[2] Arsenev A. A., “O suschestvovanii rezonansnykh polyusov i rezonansov pri rasseyanii v sluchae kraevykh uslovii II i III roda”, ZhVM i MF, 16:3 (1976), 718–724 | MR
[3] Sanches-Palensia E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR
[4] Jimbo Sh., “The singularly perturbed domain and characterization for the eigenfunctions with Neumann boundary condition”, J. Differ. Equat., 77:2 (1989), 322–350 | DOI | MR | Zbl
[5] Fang Q., “Asymptotic behavior and domain-dependency of solutions to a class of reaction-diffusion systems with large diffusion coefficents”, Hiroshima Math. J., 20 (1990), 549–571 | MR | Zbl
[6] Hempel R., Seco L., Simon B., “The essential spectrum of Neumann Laplacians on some bounded singular domains”, J. Funct. Anal., 102 (1991), 448–483 | DOI | MR | Zbl
[7] Jimbo Sh., Morita Y., “Remarks on the behavior of sertain eigenvalues on a singularly perturbed domain with several thin channels”, Comm. Partial Differ. Equat., 17 (1992), 523–552 | MR | Zbl
[8] Hislop P. D., “Singular perturbations of Dirichlet and Neumann domains and resonances for obstacle scattering”, Astérisque, 210 (1992), 197–216 | MR | Zbl
[9] Gadylshin R. R., “Asimptotika vtoroi sobstvennoi chastoty dlya sistemy dvukh tel, soedinennykh tonkoi peremychkoi”, TMF, 97:1 (1993), 68–77 | MR
[10] Gadylshin R. R., “O sobstvennykh chastotakh tel s tonkimi otrostkami. I: Skhodimost i otsenki”, Matem. zametki, 54:6 (1993), 10–21 | MR
[11] Jimbo Sh., “Perturbation formula of eigenvalues in singularly perturbed domain”, J. Math. Soc. Japan, 45 (1993), 339–356 | DOI | MR | Zbl
[12] Gadylshin R. R., “O sobstvennykh chastotakh tel s tonkimi otrostkami. II: Asimptotiki”, Matem. zametki, 55:1 (1994), 20–34 | MR
[13] Kiselev A. A., Pavlov B. S., “Sobstvennye chastoty i sobstvennye funktsii operatora Laplasa zadachi Neimana v sisteme dvukh svyaznykh rezonatorov”, TMF, 100:3 (1994), 354–366 | MR | Zbl
[14] Brown R. M., Hislop P. D., Martinez A., “Eigenvalues and resonances for domains with tubes: Neumann boundary conditions”, J. Differ. Equat., 115 (1995), 458–476 | DOI | MR | Zbl
[15] Arrieta J. M., “Neumann eigenvalue problems on exterior perturbations of the domain”, J. Differ. Equat., 118 (1995), 54–103 | DOI | MR | Zbl
[16] Arrieta J. M., “Rates of eigenvalues on a dumbbel shaped domain. Simple eigenvalue case”, Trans. of the Amer. Math. Soc., 347:9 (1995), 3503–3531 | DOI | MR | Zbl
[17] Gadylshin R. R., “O sobstvennykh chastotakh tel s tonkimi otrostkami. III: Rasscheplenie chastot”, Matem. zametki, 61:4 (1997), 494–502 | MR
[18] Hawkins H., Parnovski L., Trapped modes in a waveguide with a thick obstacle, E-print math.AP/0111103
[19] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[20] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976 | MR | Zbl
[21] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo LGU, L., 1950
[22] Kurant R., Gilbert D., Metody matematicheskoi fiziki, Mir, M., 1951
[23] Morrey C. B., Multiple integrals in the calculus of variations, Springer-Verlag, Berlin, 1966 | MR | Zbl
[24] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl
[25] Gadylshin R. R., “O sobstvennykh znacheniyakh zadachi Neimana v oblasti s uzkim kanalom svyazi”, Dokl. RAN, 387:1 (2002), 26–30 | MR
[26] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR
[27] Nazarov S. A., “Soedinenie singulyarno vyrozhdayuschikhsya oblastei razlichnykh predelnykh razmernostei, I”, Tr. sem. im. I. G. Petrovskogo, 1995, no. 18, 3–78 | Zbl
[28] Babushka I., Vyborny R., “Continuous dependence of eigenvalues on the domains”, Czech. Mat. J., 15 (1965), 169–178 | MR
[29] Arsenev A. A., “Ob osobennostyakh analiticheskogo prodolzheniya i rezonansnykh svoistvakh resheniya zadachi rasseyaniya dlya uravneniya Gelmgoltsa”, ZhVM i MF, 12:1 (1971), 112–138 | MR
[30] Petras S. V., “O rasscheplenii serii rezonansov na “nefizicheskom liste””, Zapiski nauch. sem. LOMI, 51, Nauka, L., 1975, 155–169 | MR | Zbl
[31] Fernandez C., “Resonances in scattering by a resonator”, Indiana Univ. Math. J., 34 (1985), 115–125 | DOI | MR | Zbl
[32] Hislop P. D., Martinez A., “Scattering resonances of Helmholtz resonator”, Indiana Univ. Math. J., 40 (1991), 767–788 | DOI | MR | Zbl
[33] Brown R. M., Hislop P. D., Martinez A., “Lower bounds on the interaction between cavities connected by a thin tube”, Duke Math. J., 115 (1995), 458–476 | MR | Zbl
[34] Gadylshin R. R., “Asimptotika reshenii singulyarno vozmuschennoi zadachi Dirikhle”, ZhVM i MF, 36:1 (1996), 92–102 | MR
[35] Gadylshin R. R., “Metod soglasovaniya asimptoticheskikh razlozhenii v singulyarno vozmuschennoi kraevoi zadache dlya operatora Laplasa”, Itogi nauki i tekhniki. Sovr. matem. i ee prilozh. Tematicheskie obzory, 5, VINITI, M., 2003, 3–32
[36] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1971 | MR | Zbl
[37] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991
[38] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Asimptoticheskie razlozheniya sobstvennykh chisel kraevykh zadach dlya operatora Laplasa v oblastyakh s malymi otverstiyami”, Izv. AN SSSR. Ser. matem., 48:2 (1984), 347–371 | MR
[39] Planida M. Yu., “Asymptotics for eigenvalues of Laplacian with Neumann boundary condition on a thin tube cut out”, Comptes Rendus de l'Academie des Sciences. Ser. Mecanique, 331 (2003), 531–536