Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2005_69_1_a8, author = {N. A. Tyurin}, title = {Algebraic {Lagrangian} geometry: three geometric observations}, journal = {Izvestiya. Mathematics }, pages = {177--190}, publisher = {mathdoc}, volume = {69}, number = {1}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a8/} }
N. A. Tyurin. Algebraic Lagrangian geometry: three geometric observations. Izvestiya. Mathematics , Tome 69 (2005) no. 1, pp. 177-190. http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a8/
[1] Borthwick D., Paul T., Uribe A., “Legendrian distribution with applications to relative Poincare series”, Invent. Math., 122 (1995), 359–402 | DOI | MR | Zbl
[2] Joyce D., Lectures on special Lagrangian geometry, arXiv: math.DG/0111111 | MR
[3] Donaldson S., “Symplectic submanifolds and almost complex geometry”, J. Diff. Geom., 44 (1996), 666–705 | MR | Zbl
[4] Donaldson S., Kronheimer P., The Geometry of four-manifolds, University Press, Oxford, 1990 | MR
[5] Gorodentsev A. L., Tyurin A. N., “Abeleva lagranzheva algebraicheskaya geometriya”, Izv. RAN. Ser. matem., 65:3 (2001), 15–50 | MR | Zbl
[6] Hurt N., Geometric quantization in action, Reidel Publ., Doderecht, 1983 | MR | Zbl
[7] Sniatycki J., Quantization and quantum mechanics, Springer, Berlin, 1987
[8] Tyurin A. N., On Bohr–Sommerfeld bases, arXiv: math.AG/9909084 | MR
[9] Tyurin A. N., “Spetsialnaya lagranzheva geometriya kak malaya deformatsiya algebraicheskoi geometrii”, Izv. RAN. Ser. matem., 65:1 (2001), 141–224 | MR
[10] Tyurin A. N., Geometric quantization and mirror symmetry, arXiv: math.AG/9902027
[11] Tyurin N. A., “Printsip sootvetstviya v abelevoi lagranzhevoi geometrii”, Izv. RAN. Ser. matem., 65:4 (2001), 191–204 | MR | Zbl
[12] Tyurin N. A., “Dinamicheskoe sootvetstvie v algebraicheskoi lagranzhevoi geometrii”, Izv. RAN. Ser. matem., 66:3 (2002), 175–196 | MR