Algebraic Lagrangian geometry: three geometric observations
Izvestiya. Mathematics , Tome 69 (2005) no. 1, pp. 177-190.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the moduli space of Bohr–Sommerfeld Lagrangian cycles, we realize some standard geometric objects: “divisors”, special cycles, cohomology and sheaves.
@article{IM2_2005_69_1_a8,
     author = {N. A. Tyurin},
     title = {Algebraic {Lagrangian} geometry: three geometric observations},
     journal = {Izvestiya. Mathematics },
     pages = {177--190},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a8/}
}
TY  - JOUR
AU  - N. A. Tyurin
TI  - Algebraic Lagrangian geometry: three geometric observations
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 177
EP  - 190
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a8/
LA  - en
ID  - IM2_2005_69_1_a8
ER  - 
%0 Journal Article
%A N. A. Tyurin
%T Algebraic Lagrangian geometry: three geometric observations
%J Izvestiya. Mathematics 
%D 2005
%P 177-190
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a8/
%G en
%F IM2_2005_69_1_a8
N. A. Tyurin. Algebraic Lagrangian geometry: three geometric observations. Izvestiya. Mathematics , Tome 69 (2005) no. 1, pp. 177-190. http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a8/

[1] Borthwick D., Paul T., Uribe A., “Legendrian distribution with applications to relative Poincare series”, Invent. Math., 122 (1995), 359–402 | DOI | MR | Zbl

[2] Joyce D., Lectures on special Lagrangian geometry, arXiv: math.DG/0111111 | MR

[3] Donaldson S., “Symplectic submanifolds and almost complex geometry”, J. Diff. Geom., 44 (1996), 666–705 | MR | Zbl

[4] Donaldson S., Kronheimer P., The Geometry of four-manifolds, University Press, Oxford, 1990 | MR

[5] Gorodentsev A. L., Tyurin A. N., “Abeleva lagranzheva algebraicheskaya geometriya”, Izv. RAN. Ser. matem., 65:3 (2001), 15–50 | MR | Zbl

[6] Hurt N., Geometric quantization in action, Reidel Publ., Doderecht, 1983 | MR | Zbl

[7] Sniatycki J., Quantization and quantum mechanics, Springer, Berlin, 1987

[8] Tyurin A. N., On Bohr–Sommerfeld bases, arXiv: math.AG/9909084 | MR

[9] Tyurin A. N., “Spetsialnaya lagranzheva geometriya kak malaya deformatsiya algebraicheskoi geometrii”, Izv. RAN. Ser. matem., 65:1 (2001), 141–224 | MR

[10] Tyurin A. N., Geometric quantization and mirror symmetry, arXiv: math.AG/9902027

[11] Tyurin N. A., “Printsip sootvetstviya v abelevoi lagranzhevoi geometrii”, Izv. RAN. Ser. matem., 65:4 (2001), 191–204 | MR | Zbl

[12] Tyurin N. A., “Dinamicheskoe sootvetstvie v algebraicheskoi lagranzhevoi geometrii”, Izv. RAN. Ser. matem., 66:3 (2002), 175–196 | MR