Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2005_69_1_a7, author = {S. Yu. Tikhonov}, title = {On two theorems of {Lorentz}}, journal = {Izvestiya. Mathematics }, pages = {163--175}, publisher = {mathdoc}, volume = {69}, number = {1}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a7/} }
S. Yu. Tikhonov. On two theorems of Lorentz. Izvestiya. Mathematics , Tome 69 (2005) no. 1, pp. 163-175. http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a7/
[1] Lorentz G. G., “Fourier–Koeffizienten und Funktionenklassen”, Math. Z., 51 (1948), 135–149 | DOI | MR | Zbl
[2] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR
[3] Bari N. K., Stechkin S. B., “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. MMO, 5, URSS, M., 1956, 483–522 | MR | Zbl
[4] Leindler L., Nemeth J., “On the connection between quasi power-monotone and quasi geometrical sequences with application to integrability theorems for power series”, Acta Math. Hung., 68:1–2 (1995), 7–19 | DOI | MR | Zbl
[5] Leindler L., “On the converses of inequalities of Hardy and Littlewood”, Acta Sci. Math., 58:1–4 (1993), 191–196 | MR | Zbl
[6] Leindler L., “A new class of numerical sequences and its applications to sine and cosine series”, Analysis Math., 28 (2002), 279–286 | DOI | MR | Zbl
[7] Leindler L., “Power-monotone sequences and Fourier series with positive coefficients”, J. Inequal. Pure Appl. Math., 1:1 (2000) | MR
[8] Bari N. K., “O nailuchshem priblizhenii trigonometricheskimi polinomami dvukh sopryazhennykh funktsii”, Izv. AN SSSR. Ser. matem., 19:5 (1955), 285–302 | MR | Zbl
[9] Stechkin S. B., “O nailuchshem priblizhenii sopryazhennykh funktsii trigonometricheskimi polinomami”, Izv. AN SSSR. Ser. matem., 20:2 (1956), 197–206 | MR | Zbl
[10] Taberski R., “Differences, moduli and derivatives of fractional orders”, Commentat. Math., 19 (1976–1977), 389–400 | MR
[11] Nemeth J., “Power-monotone sequences and Fourier series with positive coefficients”, J. Inequal. Pure Appl. Math., 2:14 (2001) | MR
[12] Pak I. N., “Koeffitsienty ryadov Fure i klass Lipshitsa”, Analysis Math., 16 (1990), 57–64 | DOI | MR | Zbl
[13] Tikhonov S. Yu., “Obobschennye klassy Lipshitsa i koeffitsienty Fure”, Matem. zametki, 75:6 (2004), 947–951 | MR | Zbl
[14] Zigmund A., Trigonometricheskie ryady, t. II, Mir, M., 1965 | MR
[15] Geit V. E., “Obobschennaya teorema Lorentsa o ryadakh Fure s monotonnymi koeffitsientami i ee obraschenie”, Izv. vuzov. Ser. matem., 1998, no. 4 (431), 15–17 | MR
[16] Nemeth J., “On Fourier series with nonnegative coefficients”, Acta Sci. Math., 55:1–2 (1991), 95–101 | MR | Zbl