On two theorems of Lorentz
Izvestiya. Mathematics , Tome 69 (2005) no. 1, pp. 163-175.

Voir la notice de l'article provenant de la source Math-Net.Ru

We find necessary and sufficient conditions for a function to belong to the Weyl–Nikolskii class.
@article{IM2_2005_69_1_a7,
     author = {S. Yu. Tikhonov},
     title = {On two theorems of {Lorentz}},
     journal = {Izvestiya. Mathematics },
     pages = {163--175},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a7/}
}
TY  - JOUR
AU  - S. Yu. Tikhonov
TI  - On two theorems of Lorentz
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 163
EP  - 175
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a7/
LA  - en
ID  - IM2_2005_69_1_a7
ER  - 
%0 Journal Article
%A S. Yu. Tikhonov
%T On two theorems of Lorentz
%J Izvestiya. Mathematics 
%D 2005
%P 163-175
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a7/
%G en
%F IM2_2005_69_1_a7
S. Yu. Tikhonov. On two theorems of Lorentz. Izvestiya. Mathematics , Tome 69 (2005) no. 1, pp. 163-175. http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a7/

[1] Lorentz G. G., “Fourier–Koeffizienten und Funktionenklassen”, Math. Z., 51 (1948), 135–149 | DOI | MR | Zbl

[2] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[3] Bari N. K., Stechkin S. B., “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. MMO, 5, URSS, M., 1956, 483–522 | MR | Zbl

[4] Leindler L., Nemeth J., “On the connection between quasi power-monotone and quasi geometrical sequences with application to integrability theorems for power series”, Acta Math. Hung., 68:1–2 (1995), 7–19 | DOI | MR | Zbl

[5] Leindler L., “On the converses of inequalities of Hardy and Littlewood”, Acta Sci. Math., 58:1–4 (1993), 191–196 | MR | Zbl

[6] Leindler L., “A new class of numerical sequences and its applications to sine and cosine series”, Analysis Math., 28 (2002), 279–286 | DOI | MR | Zbl

[7] Leindler L., “Power-monotone sequences and Fourier series with positive coefficients”, J. Inequal. Pure Appl. Math., 1:1 (2000) | MR

[8] Bari N. K., “O nailuchshem priblizhenii trigonometricheskimi polinomami dvukh sopryazhennykh funktsii”, Izv. AN SSSR. Ser. matem., 19:5 (1955), 285–302 | MR | Zbl

[9] Stechkin S. B., “O nailuchshem priblizhenii sopryazhennykh funktsii trigonometricheskimi polinomami”, Izv. AN SSSR. Ser. matem., 20:2 (1956), 197–206 | MR | Zbl

[10] Taberski R., “Differences, moduli and derivatives of fractional orders”, Commentat. Math., 19 (1976–1977), 389–400 | MR

[11] Nemeth J., “Power-monotone sequences and Fourier series with positive coefficients”, J. Inequal. Pure Appl. Math., 2:14 (2001) | MR

[12] Pak I. N., “Koeffitsienty ryadov Fure i klass Lipshitsa”, Analysis Math., 16 (1990), 57–64 | DOI | MR | Zbl

[13] Tikhonov S. Yu., “Obobschennye klassy Lipshitsa i koeffitsienty Fure”, Matem. zametki, 75:6 (2004), 947–951 | MR | Zbl

[14] Zigmund A., Trigonometricheskie ryady, t. II, Mir, M., 1965 | MR

[15] Geit V. E., “Obobschennaya teorema Lorentsa o ryadakh Fure s monotonnymi koeffitsientami i ee obraschenie”, Izv. vuzov. Ser. matem., 1998, no. 4 (431), 15–17 | MR

[16] Nemeth J., “On Fourier series with nonnegative coefficients”, Acta Sci. Math., 55:1–2 (1991), 95–101 | MR | Zbl