Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2005_69_1_a6, author = {S. G. Tankeev}, title = {On the numerical equivalence of algebraic cycles on potentially simple {Abelian} schemes of prime relative dimension}, journal = {Izvestiya. Mathematics }, pages = {143--162}, publisher = {mathdoc}, volume = {69}, number = {1}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a6/} }
TY - JOUR AU - S. G. Tankeev TI - On the numerical equivalence of algebraic cycles on potentially simple Abelian schemes of prime relative dimension JO - Izvestiya. Mathematics PY - 2005 SP - 143 EP - 162 VL - 69 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a6/ LA - en ID - IM2_2005_69_1_a6 ER -
S. G. Tankeev. On the numerical equivalence of algebraic cycles on potentially simple Abelian schemes of prime relative dimension. Izvestiya. Mathematics , Tome 69 (2005) no. 1, pp. 143-162. http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a6/
[1] Abdulali S., “Algebraic cycles in families of Abelian varieties”, Can. J. Math., 46:6 (1994), 1121–1134 | MR | Zbl
[2] André Y., “Pour une théorie inconditionnelle des motifs”, Publ. Math. IHES, 83 (1996), 5–49 | MR | Zbl
[3] Borel A., Lineinye algebraicheskie gruppy, Mir, M., 1972 | MR | Zbl
[4] Burbaki N., Gruppy i algebry Li, Gl. 1–3, 1976; Гл. 4–6, 1972 ; Гл. 7–8, Мир, М., 1978 | Zbl | MR
[5] Deligne P., “Théorie de Hodge, II”, Publ. Math. IHES, 40 (1971), 5–57 | MR | Zbl
[6] Deligne P., “La conjecture de Weil pour les surfaces K3”, Invent. Math., 15 (1972), 206–226 | DOI | MR | Zbl
[7] Faltings G., Chai Ch.-L., Degeneration of Abelian varieties, Springer-Verlag, Berlin, 1990 | MR | Zbl
[8] Gordon B. B., “A survey of the Hodge conjecture for Abelian varieties”, Lewis J. D., A survey of the Hodge conjecture, CRM Monograph Series, 10, CRM, Montréal, 1999, 297–356
[9] Griffits F., Kharris Dzh., Printsipy algebraicheskoi geometrii, Mir, M., 1982 | MR
[10] Grothendieck A., “Standard conjectures on algebraic cycles”, Algebr. Geom., Oxford Univ. Press, London, 1969, 193–199 | MR
[11] Hodge W. V. D., “The topological invariants of algebraic varieties”, Proc. Int. Congr. Math., V. 1, 1952, 182–192 | MR | Zbl
[12] Jannsen U., “Motives, numerical equivalence, and semi-simplicity”, Invent. Math., 107 (1992), 447–452 | DOI | MR | Zbl
[13] Kleiman S. L., “Algebraic cycles and the Weil conjectures”, Dix exposés sur la cohomologie des schémas, North-Holland, Amsterdam, 1968, 359–386 | MR
[14] Lange H., Birkenhake C., Complex Abelian varieties, Springer-Verlag, Berlin, 1992 | MR
[15] Lieberman D., “Numerical and homological equivalence of algebraic cycles on Hodge manifolds”, Amer. J. Math., 90 (1968), 366–374 | DOI | MR | Zbl
[16] Moonen B. J. J., Zarhin Yu. G., “Hodge classes and Tate classes on simple abelian fourfolds”, Duke Math. J., 77:3 (1995), 553–581 | DOI | MR | Zbl
[17] Mamford D., Lektsii o krivykh na algebraicheskoi poverkhnosti, Mir, M., 1968
[18] Mamford D., Abelevy mnogoobraziya, Mir, M., 1971
[19] Shimura G., “On analytic families of polarized abelian varieties and automorphic functions”, Ann. Math., 78 (1963), 149–192 | DOI | MR | Zbl
[20] Silverberg A., Zarkhin Yu. G., “Gruppy Khodzha abelevykh mnogoobrazii s chisto multiplikativnoi reduktsiei”, Izv. RAN. Ser. matem., 60:2 (1996), 149–158 | MR | Zbl
[21] Smirnov O. N., “Graded associative algebras and Grothendieck standard conjectures”, Invent. Math., 128 (1997), 201–206 | DOI | MR | Zbl
[22] Tankeev S. G., “Tsikly na abelevykh mnogoobraziyakh i isklyuchitelnye chisla”, Izv. RAN. Ser. matem., 60:2 (1996), 159–194 | MR | Zbl
[23] Tankeev S. G., “O standartnoi gipoteze dlya kompleksnykh abelevykh skhem nad gladkimi proektivnymi krivymi”, Izv. RAN. Ser. matem., 67:3 (2003), 183–224 | MR | Zbl
[24] Zarhin Yu. G., “Hodge group of K3 surface”, J. für die reine und angew. Math., 341 (1983), 193–220 | MR
[25] Zarkhin Yu. G., “Vesa prostykh algebr Li v kogomologiyakh algebraicheskikh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 48:2 (1984), 264–304 | MR | Zbl