On the numerical equivalence of algebraic cycles on potentially simple Abelian schemes of prime relative dimension
Izvestiya. Mathematics , Tome 69 (2005) no. 1, pp. 143-162
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\pi\colon X\to C$ be a potentially simple complex Abelian scheme of prime relative dimension over a smooth projective curve. We prove that numerical equivalence of algebraic cycles on $X$ coincides with homological equivalence.
@article{IM2_2005_69_1_a6,
author = {S. G. Tankeev},
title = {On the numerical equivalence of algebraic cycles on potentially simple {Abelian} schemes of prime relative dimension},
journal = {Izvestiya. Mathematics },
pages = {143--162},
publisher = {mathdoc},
volume = {69},
number = {1},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a6/}
}
TY - JOUR AU - S. G. Tankeev TI - On the numerical equivalence of algebraic cycles on potentially simple Abelian schemes of prime relative dimension JO - Izvestiya. Mathematics PY - 2005 SP - 143 EP - 162 VL - 69 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a6/ LA - en ID - IM2_2005_69_1_a6 ER -
S. G. Tankeev. On the numerical equivalence of algebraic cycles on potentially simple Abelian schemes of prime relative dimension. Izvestiya. Mathematics , Tome 69 (2005) no. 1, pp. 143-162. http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a6/