On the numerical equivalence of algebraic cycles on potentially simple Abelian schemes of prime relative dimension
Izvestiya. Mathematics , Tome 69 (2005) no. 1, pp. 143-162

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\pi\colon X\to C$ be a potentially simple complex Abelian scheme of prime relative dimension over a smooth projective curve. We prove that numerical equivalence of algebraic cycles on $X$ coincides with homological equivalence.
@article{IM2_2005_69_1_a6,
     author = {S. G. Tankeev},
     title = {On the numerical equivalence of algebraic cycles on potentially simple {Abelian} schemes of prime relative dimension},
     journal = {Izvestiya. Mathematics },
     pages = {143--162},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a6/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - On the numerical equivalence of algebraic cycles on potentially simple Abelian schemes of prime relative dimension
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 143
EP  - 162
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a6/
LA  - en
ID  - IM2_2005_69_1_a6
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T On the numerical equivalence of algebraic cycles on potentially simple Abelian schemes of prime relative dimension
%J Izvestiya. Mathematics 
%D 2005
%P 143-162
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a6/
%G en
%F IM2_2005_69_1_a6
S. G. Tankeev. On the numerical equivalence of algebraic cycles on potentially simple Abelian schemes of prime relative dimension. Izvestiya. Mathematics , Tome 69 (2005) no. 1, pp. 143-162. http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a6/