The Cauchy problem for an equation of Sobolev type with power non-linearity
Izvestiya. Mathematics , Tome 69 (2005) no. 1, pp. 59-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with the study of the large-time asymptotic behaviour of solutions of the Cauchy problem for a non-linear non-local equation of Sobolev type with dissipation. In the case when the initial data are small our approach is based on a detailed study of the Green's function of the linear problem and the use of the contraction-mapping method. We also consider the case when the initial data are large. In the supercritical case the asymptotics is quasilinear. The asymptotic behaviour of solutions in the critical case differs from the behaviour of solutions of the corresponding linear equation by a logarithmic correction. In the subcritical case we prove that the principal term of the large-time asymptotics of the solution can be represented by a self-similar solution if the initial data have non-zero total mass.
@article{IM2_2005_69_1_a2,
     author = {E. I. Kaikina and P. I. Naumkin and I. A. Shishmarev},
     title = {The {Cauchy} problem for an equation of {Sobolev} type with power non-linearity},
     journal = {Izvestiya. Mathematics },
     pages = {59--111},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a2/}
}
TY  - JOUR
AU  - E. I. Kaikina
AU  - P. I. Naumkin
AU  - I. A. Shishmarev
TI  - The Cauchy problem for an equation of Sobolev type with power non-linearity
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 59
EP  - 111
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a2/
LA  - en
ID  - IM2_2005_69_1_a2
ER  - 
%0 Journal Article
%A E. I. Kaikina
%A P. I. Naumkin
%A I. A. Shishmarev
%T The Cauchy problem for an equation of Sobolev type with power non-linearity
%J Izvestiya. Mathematics 
%D 2005
%P 59-111
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a2/
%G en
%F IM2_2005_69_1_a2
E. I. Kaikina; P. I. Naumkin; I. A. Shishmarev. The Cauchy problem for an equation of Sobolev type with power non-linearity. Izvestiya. Mathematics , Tome 69 (2005) no. 1, pp. 59-111. http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a2/

[1] Amick C. J., Bona J. L., Schonbek M. E., “Decay of solutions of some nonlinear wave equations”, J. Diff. Eqs., 81:4 (1989), 1–49 | DOI | MR | Zbl

[2] Bisognin V., “On the asympototic behavior of the solutions of a nonlinear dispersive system of Benjamin–Bona–Mahony's type”, Boll. Un. Mat. Ital. B, 10:7 (1996), 99–128 | MR | Zbl

[3] Bona J. L., Luo L., “Decay of solutions to nonlinear, dispersive wave equations”, J. Diff. Integ. Eqs., 6 (1993), 961–980 | MR | Zbl

[4] Bona J. L., Luo L., “More results on the decay of solutions to nonlinear, dispersive wave equations”, Discrete and Continuous Dynamical Systems, 1 (1995), 151–193 | DOI | MR | Zbl

[5] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1978

[6] Constantin A., Escher J., “Wave breaking for nonlinear nonlocal shallow water equations”, Acta Math., 181:2 (1998), 229–243 | DOI | MR | Zbl

[7] Dix D. B., “The dissipation of nonlinear dispersive waves: The case of asymptotically weak nonlinearity”, Comm. P. D. E., 17 (1992), 1665–1693 | DOI | MR | Zbl

[8] Vatson Dzh., Teoriya funktsii Besselya, Mir, M., 1944

[9] Gabov S. A., Novye zadachi matematicheskoi teorii voln, Fizmatgiz, M., 1998 | Zbl

[10] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye metody i operatornye differentsialnye uravneniya, Mir, M., 1978

[11] Galaktionov V. A., Kurdyumov S. P., Samarskii A. A., “Asimptoticheskie sobstvennye funktsii zadachi Koshi dlya nelineinykh parabolicheskikh uravnenii”, Matem. sb., 126:4 (1985), 435–472 | MR

[12] Demidenko G. V., Uspenskii S. V., Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauchnaya kniga, Novosibirsk, 1998 | MR | Zbl

[13] Dobrokhotov S. Yu., “Nelokalnye analogi nelineinogo uravneniya Bussineska dlya poverkhnostnykh voln nad nerovnym dnom i ikh asimptoticheskie resheniya”, DAN SSSR, 292:1 (1987), 63–67 | MR | Zbl

[14] Egorov I. E., Pyatkov S. G., Popov S. V., Neklassicheskie differentsialno-operatornye uravneniya, Nauka, Novosibirsk, 2000 | MR

[15] Escobedo M., Kavian O., “Asymptotic behavior of positive solutions of a non-linear heat equation”, Houston J. of Math., 13:4 (1987), 39–50 | MR

[16] Escobedo M., Kavian O., Matano H., “Large time behavior of solutions of a dissipative nonlinear heat equation”, Comm. Partial Diff. Eqs., 20 (1994), 1427–1452 | DOI | MR

[17] Favini A., Yagi A., Degenerate differential equations in Banach spaces, Marcel Dekker, Inc., N. Y., 1999 | MR | Zbl

[18] Fujita H., “On blowing-up of solutions of the Cauchy problem for $u_t=\Delta u+u^{1+\alpha}$”, J. Fac. Sci. Univ. of Tokyo. Sect. I, 13 (1966), 109–124 | MR | Zbl

[19] Gmira A., Veron L., “Large time behavior of solutions of a semilinear parabolic equation in $\mathbb R^N$”, J. Diff. Eqs., 53 (1984), 258–276 | DOI | MR | Zbl

[20] Hayashi N., Kaikina E. I., Naumkin P. I., “Large time behavior of solutions to dissipative nonlinear Schrödinger equation”, Proceedings of Royal Soc. Edingburgh, 130A, 2000, 1029–1043 | MR

[21] Hayashi N., Kaikina E. I., Naumkin P. I., “Global existence and decay in time of small solutions to Landau–Ginzburg type equations”, J. d'Analyse Mathematique, 90 (2003), 141–173 | DOI | MR

[22] Hayashi N., Ito N., Kaikina E. I., Naumkin P. I., “On some nonlinear dissipative equations with sub-critical nonlinearities”, Taiwanese J. of Math., 8 (2004), 135–154 | MR | Zbl

[23] Hayashi N., Naumkin P. I., “Asymptotics for Korteweg–de Vries–Burgers equation”, Acta Math. Sin. (Engl. Ser.), 22:5 (2006), 1441–1456 | DOI | MR | Zbl

[24] Kaikina E. I., Naumkin P. I., Shishmarëv I. A., “Asimptotika reshenii nelineinykh dissipativnykh sistem uravnenii”, Izv. RAN. Ser. matem., 68:3 (2004), 29–62 | MR

[25] Kamin S., Peletier L. A., “Large time behaviour of solutions of the heat equation with absorption”, Ann. Scuola Norm. Sup. Pisa, 12 (1985), 393–408 | MR | Zbl

[26] Karch G., “Asymptotic behaviour of solutions to some pseudoparabolic equations”, Math. Methods in the Applied Sciences, 20 (1997), 271–289 | 3.0.CO;2-F class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[27] Karch G., “Large-time behavior of solutions to nonlinear wave equations: higher-order asymptotics”, Math. Methods in the Applied Sciences, 22 (1999), 1671–1697 | 3.0.CO;2-Q class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[28] Kavian O., “Remarks on the large time behavior of a nonlinear diffusion equation”, Ann. Inst. Henri Poincaré. Analyse non linéaire, 4:5 (1987), 423–452 | MR | Zbl

[29] Kozhanov A. I., “Parabolicheskie uravneniya s nelineinym nelokalnym istochnikom”, Sib. matem. zhurn., 35:5 (1994), 1062–1073 | MR | Zbl

[30] Kozhanov A. I., “Nachalno-kraevaya zadacha dlya uravneniya tipa obobschennogo uravneniya Bussineska s nelineinym istochnikom”, Matem. zametki, 65:1 (1999), 70–75 | MR | Zbl

[31] Korpusov M. O., Pletner Yu. D., Sveshnikov A. G., “O nestatsionarnykh volnakh v sredakh s anizotropnoi dispersiei”, ZhVMiMF, 39:6 (1999), 1006–1022 | MR | Zbl

[32] Korpusov M. O., Sveshnikov A. G., “Trekhmernye nelineinye evolyutsionnye uravneniya psevdoparabolicheskogo tipa v zadachakh matematicheskoi fiziki”, ZhVMiMF, 43:12 (2003), 1835–1869 | MR | Zbl

[33] Levine H. A., “Some nonexistence and instability theorems for solutions of the formally parabolic equations of the form $Pu_t=-Au+F(u)$”, Arch. Rational Mech. Anal., 51 (1973), 371–386 | DOI | MR | Zbl

[34] Mei M., “$L_q$-decay rates of solutions for Benjamin–Bona–Mahony–Burgers equations”, J. Diff. Eqs., 158 (1999), 314–340 | DOI | MR | Zbl

[35] Mei M., Schmeiser C., “Asymptotic profiles of solutions for the BBM–Burgers equations”, Funkcial. Ekvac., 44 (2001), 151–170 | MR | Zbl

[36] Mitidieri E., Pokhozhaev S. I., “Apriornye otsenki i otsutstvie reshenii differentsialnykh neravenstv v chastnykh proizvodnykh”, Tr. MIAN, 232, Nauka, M., 2001, 1–222 | MR

[37] Naumkin P. I., Shishmarev I. A., Nonlinear Nonlocal Equations in the Theory of Waves, Transl. Math. Monographs, 133, AMS, Providence, 1994 | MR | Zbl

[38] Prado R., Zuazua E., “Asymptotic expansion for the generalized Benjamin–Bona–Mahony–Burgers equation”, Diff. Integ. Eqs., 15:12 (2002), 1409–1434 | MR | Zbl

[39] Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1999 | MR

[40] Sviridyuk G. A., Fedorov V. E., “Analiticheskie polugruppy s yadrami i lineinye uravneniya tipa Soboleva”, Sib. matem. zhurn., 36:5 (1995), 1130–1145 | MR | Zbl

[41] Sobolev S. L., “Ob odnoi novoi zadache matematicheskoi fiziki”, Izv. AN SSSR. Ser. matem., 18:1 (1954), 3–50 | MR | Zbl

[42] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR | Zbl

[43] Stefanelli U., “On a class of doubly nonlinear nonlocal evolution equations”, Diff. Integ. Eqs., 15:8 (2002), 897–922 | MR | Zbl

[44] Titchmarsh E. S., Vvedenie v teoriyu integralov Fure, Mir, M., 1944

[45] Uizem Dzh. B., Lineinye i nelineinye volny, Mir, M., 1977

[46] Shishmarëv I. A., “Ob odnom nelineinom uravnenii tipa Soboleva”, Diff. uravn., 41:1 (2005)

[47] Schonbek M. E., “The Fourier splitting method”, Advances in geometric analysis and continuum mechanics, Internat. Press, Cambridge, 1995, 269–274 | MR | Zbl

[48] Showalter R. E., Monotone operators in Banach space and nonlinear partial differential equations, AMS, Providence, 1997 | MR | Zbl

[49] Zhang L., “Decay of solutions of generalized Benjamin–Bona–Mahony equations”, Acta Math. Sinica. New Series, 10 (1994), 428–438 | DOI | MR | Zbl

[50] Zhang L., “Decay of solutions of generalized Benjamin–Bona–Mahony–Burgers equations in $n$-space dimensions”, Nonlinear Analisis T. M. A., 25 (1995), 1343–1369 | DOI | MR | Zbl

[51] Zuazua E., “A dynamical system approach to self similar large time behavior in scalar convection-diffusion equation”, J. Diff. Eqs., 108 (1994), 1–35 | DOI | MR | Zbl