Estimates for the accuracy of modelling boundary-value problems at the
Izvestiya. Mathematics , Tome 68 (2004) no. 6, pp. 1179-1215

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with the mixed boundary-value problem for the Poisson equation at the junction of thin rods and a massive body $\Omega$ that have different stiffnesses. We suggest a new approach to the study of this singularly perturbed problem. Namely, we construct a model of the junction that gives an approximation to the solution of the original problem on the whole range of parameters $h\in(0,h_0]$ and $\gamma\in(0,+\infty)$ (the relative thickness and relative stiffness of the rods). The model contains ordinary differential equations on the line segments $\Upsilon_j$ (the axes of the rods) and the Neumann problem on the domain $\Omega$, which are combined into a single problem by imposing asymptotic conjugation conditions at the points $P^j=\overline\Upsilon_j\cap\overline\Omega$ correlating the coefficients of the expansions of solutions on $\Upsilon_j$ (as $\Upsilon_j\ni z^j\rightarrow P^j$) with those of solutions on $\Omega$ (as $\Omega\ni x\rightarrow P^j$). We obtain estimates for the accuracy of the model that are asymptotically exact. The conjugation conditions preserve the parameters $h$ and $\gamma$ but generate a regularly perturbed problem, and it is not difficult to obtain and justify asymptotics of its solutions and those of solutions of the original problem under any relation between $\gamma$ and $h$.
@article{IM2_2004_68_6_a6,
     author = {S. A. Nazarov},
     title = {Estimates for the accuracy of modelling boundary-value problems at the},
     journal = {Izvestiya. Mathematics },
     pages = {1179--1215},
     publisher = {mathdoc},
     volume = {68},
     number = {6},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a6/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Estimates for the accuracy of modelling boundary-value problems at the
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 1179
EP  - 1215
VL  - 68
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a6/
LA  - en
ID  - IM2_2004_68_6_a6
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Estimates for the accuracy of modelling boundary-value problems at the
%J Izvestiya. Mathematics 
%D 2004
%P 1179-1215
%V 68
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a6/
%G en
%F IM2_2004_68_6_a6
S. A. Nazarov. Estimates for the accuracy of modelling boundary-value problems at the. Izvestiya. Mathematics , Tome 68 (2004) no. 6, pp. 1179-1215. http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a6/