Estimates for the accuracy of modelling boundary-value problems at the
Izvestiya. Mathematics , Tome 68 (2004) no. 6, pp. 1179-1215.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with the mixed boundary-value problem for the Poisson equation at the junction of thin rods and a massive body $\Omega$ that have different stiffnesses. We suggest a new approach to the study of this singularly perturbed problem. Namely, we construct a model of the junction that gives an approximation to the solution of the original problem on the whole range of parameters $h\in(0,h_0]$ and $\gamma\in(0,+\infty)$ (the relative thickness and relative stiffness of the rods). The model contains ordinary differential equations on the line segments $\Upsilon_j$ (the axes of the rods) and the Neumann problem on the domain $\Omega$, which are combined into a single problem by imposing asymptotic conjugation conditions at the points $P^j=\overline\Upsilon_j\cap\overline\Omega$ correlating the coefficients of the expansions of solutions on $\Upsilon_j$ (as $\Upsilon_j\ni z^j\rightarrow P^j$) with those of solutions on $\Omega$ (as $\Omega\ni x\rightarrow P^j$). We obtain estimates for the accuracy of the model that are asymptotically exact. The conjugation conditions preserve the parameters $h$ and $\gamma$ but generate a regularly perturbed problem, and it is not difficult to obtain and justify asymptotics of its solutions and those of solutions of the original problem under any relation between $\gamma$ and $h$.
@article{IM2_2004_68_6_a6,
     author = {S. A. Nazarov},
     title = {Estimates for the accuracy of modelling boundary-value problems at the},
     journal = {Izvestiya. Mathematics },
     pages = {1179--1215},
     publisher = {mathdoc},
     volume = {68},
     number = {6},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a6/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Estimates for the accuracy of modelling boundary-value problems at the
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 1179
EP  - 1215
VL  - 68
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a6/
LA  - en
ID  - IM2_2004_68_6_a6
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Estimates for the accuracy of modelling boundary-value problems at the
%J Izvestiya. Mathematics 
%D 2004
%P 1179-1215
%V 68
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a6/
%G en
%F IM2_2004_68_6_a6
S. A. Nazarov. Estimates for the accuracy of modelling boundary-value problems at the. Izvestiya. Mathematics , Tome 68 (2004) no. 6, pp. 1179-1215. http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a6/

[1] Kozlov V. A., Maz'ya V. G., Movchan A. B., “Asymptotic analysis of a mixed boundary value problem in a multistructure”, Asympt. Anal., 8 (1994), 105–143 | MR | Zbl

[2] Kozlov V. A., Maz'ya V. G., Movchan A. B., Asymptotic analysis of fields in multi-structures, Clarendon Press, Oxford, 1999 | MR | Zbl

[3] Nazarov S. A., “Soedineniya singulyarno vyrozhdayuschikhsya oblastei razlichnykh predelnykh razmernostei. 1; 2”, Tr. semin. im. I. G. Petrovskogo, no. 18, Izd-vo MGU, M., 1995, 3–78; No 20, Изд-во МГУ, М., 1997, 155–195 | MR

[4] Ciarlet P. G., Plates and Junctions in Elastic Multi-Structures: An Asymptotic Analysis, Masson, Paris, 1988 | MR

[5] Gaudiello A., Monneau R., Mossino J., Murat F., Sili A., “On the junction of elastic plates and beams”, C. R. Acad. Sci. Paris. Sér. 1, 335 (2002), 717–722 | MR | Zbl

[6] Nazarov S. A., Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2002 | Zbl

[7] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991

[8] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. Mosk. matem. ob-va, 16 (1963), 219–292

[9] Mazya V. G., Plamenevskii B. A., “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblasti s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI

[10] Kozlov V. A., Maz'ya V. G., Rossmann J., Elliptic boundary value problems in domains with point singularities, Amer. Math. Soc., Providence, 1997 | MR | Zbl

[11] Smirnov V. I., Kurs vysshei matematiki, 2, Nauka, M., 1967

[12] Nazarov S. A., Plamenevskii B. A., “Obobschennaya formula Grina dlya ellipticheskikh zadach v oblastyakh s rebrami”, Problemy matem. analiza, no. 13, Izd-vo SPbGU, SPb., 1992, 106–147

[13] Nazarov S. A., Plamenevskii B. A., “Samosopryazhennye zadachi s usloviyami izlucheniya na rebrakh granitsy”, Algebra i analiz, 4:3 (1992), 196–225 | Zbl

[14] Nazarov S. A., “Samosopryazhennye rasshireniya operatora zadachi Dirikhle v vesovykh funktsionalnykh prostranstvakh”, Matem. sb., 137:2 (1988), 224–241

[15] Nazarov S. A., “Asimptoticheskie usloviya v tochkakh, samosopryazhennye rasshireniya operatorov i metod sraschivaemykh asimptoticheskikh razlozhenii”, Tr. Sankt-Peterburg. matem. ob-va, 5 (1996), 112–183

[16] Berezin F. A., Faddeev L. D., “Zamechanie ob uravnenii Shrëdingera s singulyarnym potentsialom”, DAN SSSR, 137:5 (1961), 1011–1014 | MR | Zbl

[17] Pavlov B. S., “Teoriya rasshirenii i yavno reshaemye modeli”, UMN, 42:6 (1987), 99–132 | MR

[18] Karpeshina Yu. E., Pavlov B. S., “Vzaimodeistviya nulevogo radiusa dlya bigarmonicheskogo i poligarmonicheskogo uravnenii”, Matem. zametki, 40:1 (1986), 49–59 | MR | Zbl

[19] Kamotskii I. V., Nazarov S. A., “Spektralnye zadachi v singulyarno vozmuschennykh oblastyakh i samosopryazhennye rasshireniya differentsialnykh operatorov”, Tr. Sankt-Peterburg. matem. ob-va, 6 (1998), 151–212 | MR

[20] Nazarov S. A., Sokolowski J., “Asymptotic analysis of shape functionals”, J. Math. Pures Appl., 82:2 (2003), 125–196 | MR | Zbl

[21] Polia G., Sege G., Izoperimetricheskie neravenstva v matematicheskoi fizike, Fizmatgiz, M., 1962

[22] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR | Zbl

[23] Van-Daik M., Metody vozmuschenii v mekhanike zhidkosti, Mir, M., 1967

[24] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[25] Ilin A. M., “Kraevaya zadacha dlya ellipticheskogo uravneniya vtorogo poryadka v oblasti s uzkoi schelyu. II: Oblast s malym otverstiem”, Matem. sb., 103:2 (1977), 265–284 | MR | Zbl

[26] Nazarov S. A., “Obschaya skhema osredneniya samosopryazhennykh ellipticheskikh sistem v mnogomernykh oblastyakh, v tom chisle tonkikh”, Algebra i analiz, 7:5 (1995), 1–92 | Zbl

[27] Nazarov S. A., “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, UMN, 54:5 (1999), 77–142 | MR | Zbl

[28] Nazarov S. A., “Korn's inequalities for junctions of spatial bodies and thin rods”, Math. Methods Appl. Sci., 20:3 (1997), 219–243 | 3.0.CO;2-C class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[29] Mazya V. G., Plamenevskii B. A., “Shauderovskie otsenki reshenii ellipticheskikh kraevykh zadach v oblastyakh s rebrami na granitse”, Differents. uravneniya s chastnymi proizvodnymi, Tr. seminara S. L. Soboleva, no. 2, Izd-vo SO AN SSSR, Novosibirsk, 1978, 69–102 | MR